George Gamow


George Gamow

George Gamow Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about George Gamow


⭐ Core Definition: George Gamow

George Gamow (sometimes Gammoff; born Georgiy Antonovich Gamov; Russian: Гео́ргий Анто́нович Га́мов; March 4 [O.S. February 20] 1904 – August 19, 1968) was a Soviet and American polymath, theoretical physicist and cosmologist. He was an early advocate and developer of Georges Lemaître's Big Bang theory. Gamow discovered a theoretical explanation of alpha decay by quantum tunneling, invented the liquid drop model (the first mathematical model of the atomic nucleus), worked on radioactive decay, star formation, stellar nucleosynthesis, Big Bang nucleosynthesis (which he collectively called nucleocosmogenesis), and predicted the existence of the cosmic microwave background radiation and molecular genetics. Gamow was a key figure in the development and understanding of quantum tunneling.

In his middle and late career, Gamow directed much of his attention to teaching and wrote popular books on science, including One Two Three... Infinity and the Mr Tompkins series of books (1939–1967). Some of his books remain in print more than a half-century after their original publication. The George Gamow Memorial Lectures at the University of Colorado at Boulder are given in his honor.

↓ Menu
HINT:

In this Dossier

George Gamow in the context of Holmdel Horn Antenna

The Holmdel Horn Antenna is a large microwave horn antenna that was used as a satellite communication antenna and radio telescope during the 1960s at the Bell Telephone Laboratories facility located on Crawford Hill in Holmdel Township, New Jersey, United States. It was designated a National Historic Landmark in 1989 because of its association with the research work of two radio astronomers, Arno Penzias and Robert Wilson.

In 1965, while using this antenna, Penzias and Wilson discovered the cosmic microwave background radiation (CMBR) that permeates the universe. This was one of the most important discoveries in physical cosmology since Edwin Hubble demonstrated in the 1920s that the universe was expanding. It provided the evidence that confirmed George Gamow's and Georges Lemaître's "Big Bang" theory of the creation of the universe. This helped change the science of cosmology, the study of the universe's history, from a field for unlimited theoretical speculation into a discipline of direct observation. In 1978 Penzias and Wilson received the Nobel Prize for Physics for their discovery.

View the full Wikipedia page for Holmdel Horn Antenna
↑ Return to Menu

George Gamow in the context of Semi-empirical mass formula

In nuclear physics, the semi-empirical mass formula (SEMF; sometimes also called the Weizsäcker formula, Bethe–Weizsäcker formula, or Bethe–Weizsäcker mass formula to distinguish it from the Bethe–Weizsäcker process) is used to approximate the mass of an atomic nucleus from its number of protons and neutrons. As the name suggests, it is based partly on theory and partly on empirical measurements. The formula represents the liquid-drop model proposed by George Gamow, which can account for most of the terms in the formula and gives rough estimates for the values of the coefficients. It was first formulated in 1935 by German physicist Carl Friedrich von Weizsäcker, and although refinements have been made to the coefficients over the years, the structure of the formula remains the same today.

The formula gives a good approximation for atomic masses and thereby other effects. However, it fails to explain the existence of lines of greater binding energy at certain numbers of protons and neutrons. These numbers, known as magic numbers, are the foundation of the nuclear shell model.

View the full Wikipedia page for Semi-empirical mass formula
↑ Return to Menu