Geophysics in the context of "Geologic time scale"

⭐ In the context of the geologic time scale, how are chronostratigraphy and geochronology primarily utilized by geophysicists and related Earth scientists?

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Geophysics in the context of Marine geology

Marine geology or geological oceanography is the study of the history and structure of the ocean floor. It involves geophysical, geochemical, sedimentological and paleontological investigations of the ocean floor and coastal zone. Marine geology has strong ties to geophysics and to physical oceanography.

Marine geological studies were of extreme importance in providing the critical evidence for sea floor spreading and plate tectonics in the years following World War II. The deep ocean floor is the last essentially unexplored frontier and detailed mapping in support of economic (petroleum and metal mining), natural disaster mitigation, and academic objectives.

↑ Return to Menu

Geophysics in the context of Age (geology)

The geologic time scale or geological time scale (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (a scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists, paleontologists, geophysicists, geochemists, and paleoclimatologists) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies, paleomagnetic properties, and fossils. The definition of standardised international units of geological time is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precisely define global chronostratigraphic units of the International Chronostratigraphic Chart (ICC) that are used to define divisions of geological time. The chronostratigraphic divisions are in turn used to define geochronologic units.

↑ Return to Menu

Geophysics in the context of Daniel Garcia-Castellanos

Daniel Garcia-Castellanos (born 1968 in Kuwait) is a Spanish scientist at the Spanish National Research Council (CSIC) who investigates in the field of geophysics and is known for his theory about the catastrophic flooding of the Mediterranean Sea in the recent geological past, an event known as the Zanclean flood. Other scientific contributions deal with the evolution of the Earth's relief as a result of the deep geodynamic phenomena of the Earth’s interior interacting with the erosion and climate at the surface.

Some of his studies support the idea that, after being isolated from the world's oceans due to the collision between the tectonic plates of Africa and Eurasia, the Mediterranean Sea underwent a desiccation period known as the Messinian salinity crisis, and later a catastrophic reflooding through the Strait of Gibraltar, 5 million years ago, the Zanclean flood.

↑ Return to Menu

Geophysics in the context of Hydrostatics

Hydrostatics is the branch of fluid mechanics that studies fluids at hydrostatic equilibrium and "the pressure in a fluid or exerted by a fluid on an immersed body". The word "hydrostatics" is sometimes used to refer specifically to water and other liquids, but more often it includes both gases and liquids, whether compressible or incompressible. It encompasses the study of the conditions under which fluids are at rest in stable equilibrium. It is opposed to fluid dynamics, the study of fluids in motion.

Hydrostatics is fundamental to hydraulics, the engineering of equipment for storing, transporting and using fluids. It is also relevant to geophysics and astrophysics (for example, in understanding plate tectonics and the anomalies of the Earth's gravitational field), to meteorology, to medicine (in the context of blood pressure), and many other fields.

↑ Return to Menu

Geophysics in the context of Magnetostratigraphy

Magnetostratigraphy is a geophysical correlation technique used to date sedimentary and volcanic sequences. The method works by collecting oriented samples at measured intervals throughout the section. The samples are analyzed to determine their characteristic remanent magnetization (ChRM), that is, the polarity of Earth's magnetic field at the time a stratum was deposited. This is possible because volcanic flows acquire a thermoremanent magnetization and sediments acquire a depositional remanent magnetization, both of which reflect the direction of the Earth's field at the time of formation. This technique is typically used to date sequences that generally lack fossils or interbedded igneous rock. It is particularly useful in high-resolution correlation of deep marine stratigraphy where it allowed the validation of the Vine–Matthews–Morley hypothesis related to the theory of plate tectonics.

↑ Return to Menu

Geophysics in the context of Solid earth

Solid earth refers to "the earth beneath our feet" or terra firma, the planet's solid surface and its interior. It excludes the Earth's fluid envelopes, the atmosphere and hydrosphere (but includes the ocean basin), as well as the biosphere and interactions with the Sun.

Solid-earth science refers to the corresponding methods of study, a subset of Earth sciences, predominantly geophysics and geology, excluding aeronomy, atmospheric sciences, oceanography, hydrology, and ecology.

↑ Return to Menu

Geophysics in the context of Ministry of Public Works and Transport (Spain)

The Ministry of Transport and Sustainable Mobility (MITMA) (Spanish: Ministerio de Transportes y Movilidad Sostenible), traditionally known as the Ministry of Development (MIFOM), is the department of the Government of Spain responsible for preparing and implementing the government policy on land, air and maritime transport infrastructure and the control, planning and regulation of the transport services on this areas. It is also responsible for guaranteeing access to housing; urban, soil and architecture policies; planning and controlling the postal and telegraph services, directing the services related to astronomy, geodesy, geophysics and mapping, and planning and programing the government investments on infrastructure and services related to this scope. The Ministry's headquarters are in the New Ministries government complex.

MITMA is headed by the Minister of Transport, Mobility and Urban Agenda, who is appointed by the King of Spain at request of the Prime Minister. The Minister is assisted by two main officials, the Secretary of State for Infrastructure, Transport and Housing and the Under Secretary of Transport, Mobility and Urban Agenda. Other senior officials of the ministry include the Secretary General for Infrastructure, the Secretary General for Transport and the Secretary General for Housing. Since 21 November 2023 the minister has been Óscar Puente.

↑ Return to Menu

Geophysics in the context of Prospecting

Prospecting is the first stage of the geological analysis (followed by exploration) of a territory. It is the search for minerals, fossils, precious metals, or mineral specimens. It is also known as fossicking.

Traditionally prospecting relied on direct observation of mineralization in rock outcrops or in sediments. Modern prospecting also includes the use of geologic, geophysical, and geochemical tools to search for anomalies which can narrow the search area. Once an anomaly has been identified and interpreted to be a potential prospect direct observation can then be focused on this area.

↑ Return to Menu

Geophysics in the context of Planetary geology

Planetary geology, alternatively known as astrogeology or exogeology, is a planetary science discipline concerned with the geology of celestial bodies such as planets and their moons, asteroids, comets, and meteorites. Although the geo- prefix typically indicates topics of or relating to Earth, planetary geology is named as such for historical and convenience reasons; due to the subject matter, it is closely linked with more traditional Earth-based geology.

Planetary geology includes such topics as determining the properties and processes of the internal structure of the terrestrial planets, surface processes such as volcanism, impact craters, even fluvial and aeolian action where applicable. Despite their outermost layers being dominated by gases, the giant planets are also included in the field of planetary geology, especially when it comes to their interiors. Fields within Planetary geology are largely derived from fields in the traditional geological sciences, such as geophysics, geomorphology, and geochemistry.

↑ Return to Menu