Geometrical measures in the context of "Physical dimension"

Play Trivia Questions online!

or

Skip to study material about Geometrical measures in the context of "Physical dimension"

Ad spacer

⭐ Core Definition: Geometrical measures

Geometry is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.

Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, a problem that was stated in terms of elementary arithmetic, and remained unsolved for several centuries.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Geometrical measures in the context of Size

Size in general is the magnitude or dimensions of a thing. More specifically, geometrical size (or spatial size) can refer to three geometrical measures: length, area, or volume. Length can be generalized to other linear dimensions (width, height, diameter, perimeter). Size can also be measured in terms of mass, especially when assuming a density range.

In mathematical terms, "size is a concept abstracted from the process of measuring by comparing a longer to a shorter". Size is determined by the process of comparing or measuring objects, which results in the determination of the magnitude of a quantity, such as length or mass, relative to a unit of measurement. Such a magnitude is usually expressed as a numerical value of units on a previously established spatial scale, such as meters or inches.

↑ Return to Menu

Geometrical measures in the context of Measure (mathematics)

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general.

The intuition behind this concept dates back to Ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Constantin Carathéodory, and Maurice Fréchet, among others. According to Thomas W. Hawkins Jr., "It was primarily through the theory of multiple integrals and, in particular the work of Camille Jordan that the importance of the notion of measurability was first recognized."

↑ Return to Menu