Genome sequencing in the context of Mitochondrial DNA


Genome sequencing in the context of Mitochondrial DNA

Genome sequencing Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Genome sequencing in the context of "Mitochondrial DNA"


⭐ Core Definition: Genome sequencing

Whole genome sequencing (WGS), also known as full genome sequencing or just genome sequencing, is the process of determining the entirety of the DNA sequence of an organism's genome at a single time. This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast.

Whole genome sequencing has largely been used as a research tool, but was being introduced to clinics in 2014. In the future of personalized medicine, whole genome sequence data may be an important tool to guide therapeutic intervention. The tool of gene sequencing at SNP level is also used to pinpoint functional variants from association studies and improve the knowledge available to researchers interested in evolutionary biology, and hence may lay the foundation for predicting disease susceptibility and drug response.

↓ Menu
HINT:

In this Dossier

Genome sequencing in the context of Archaellum

The archaellum (pl.: archaella; formerly archaeal flagellum) is a unique structure on the cell surface of many archaea that allows for swimming motility. The archaellum consists of a rigid helical filament that is attached to the cell membrane by a molecular motor. This molecular motor – composed of cytosolic, membrane, and pseudo-periplasmic proteins – is responsible for the assembly of the filament and, once assembled, for its rotation. The rotation of the filament propels archaeal cells in liquid medium, in a manner similar to the propeller of a boat. The bacterial analog of the archaellum is the flagellum, which is also responsible for their swimming motility and can also be compared to a rotating corkscrew. Although the movement of archaella and flagella is sometimes described as "whip-like", this is incorrect, as only cilia from Eukaryotes move in this manner. Indeed, even "flagellum" (word derived from Latin meaning "whip") is a misnomer, as bacterial flagella also work as propeller-like structures.

Early studies on "archaeal flagella" identified several differences between archaella and flagella, although those differences were dismissed as a possible adaptation of archaella to the extreme ecological environments where archaea were at the time known to inhabit. When the first genomes of archaeal organisms were sequenced, it became obvious that archaea do not code for any of the proteins that are part of the flagellum, thus establishing that the motility system of archaea is fundamentally different from that of bacteria. In order to highlight the difference between these two organelles, the name archaellum was proposed in 2012 following studies that showed it to be evolutionarily and structurally different from the bacterial flagella and eukaryotic cilia.

View the full Wikipedia page for Archaellum
↑ Return to Menu

Genome sequencing in the context of Chloroplast DNA

Plastid DNA (ptDNA), also known as chloroplast DNA (cpDNA or ctDNA) in photosynthetic organisms, is the DNA located in chloroplasts, which are photosynthetic organelles located within the cells of some eukaryotic organisms, as well as some reduced plastids, such as apicoplasts. Chloroplasts, like other types of plastid, contain a genome separate from that in the cell nucleus. The existence of chloroplast DNA was identified biochemically in 1959, and confirmed by electron microscopy in 1962. The discoveries that the chloroplast contains ribosomes and performs protein synthesis revealed that the chloroplast is genetically semi-autonomous. The first complete chloroplast genome sequences were published in 1986, Nicotiana tabacum (tobacco) by Sugiura and colleagues and Marchantia polymorpha (liverwort) by Ozeki et al. Since then, tens of thousands of chloroplast genomes from various species have been sequenced.

View the full Wikipedia page for Chloroplast DNA
↑ Return to Menu

Genome sequencing in the context of The Cancer Genome Atlas

The Cancer Genome Atlas (TCGA) is a project to catalogue the genomic alterations responsible for cancer using genome sequencing and bioinformatics. The overarching goal was to apply high-throughput genome analysis techniques to improve the ability to diagnose, treat, and prevent cancer through a better understanding of the genetic basis of the disease.

TCGA was supervised by the National Cancer Institute's Center for Cancer Genomics and the National Human Genome Research Institute funded by the US government. A three-year pilot project, begun in 2006, focused on characterization of three types of human cancers: glioblastoma multiforme, lung squamous carcinoma, and ovarian serous adenocarcinoma. In 2009, it expanded into phase II, which planned to complete the genomic characterization and sequence analysis of 20–25 different tumor types by 2014. Ultimately, TCGA surpassed that goal, characterizing 33 cancer types including 10 rare cancers.

View the full Wikipedia page for The Cancer Genome Atlas
↑ Return to Menu