Genetic engineering in the context of "Gene targeting"

Play Trivia Questions online!

or

Skip to study material about Genetic engineering in the context of "Gene targeting"

Ad spacer

⭐ Core Definition: Genetic engineering

Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA. A construct is usually created and used to insert this DNA into the host organism. The first recombinant DNA molecule was designed by Paul Berg in 1972 by combining DNA from the monkey virus SV40 with the lambda virus. As well as inserting genes, the process can be used to remove, or "knock out", genes. The new DNA can either be inserted randomly or targeted to a specific part of the genome.

An organism that is generated through genetic engineering is considered to be genetically modified (GM), and the resulting entity is a genetically modified organism (GMO). The first GMO was a bacterium generated by Herbert Boyer and Stanley Cohen in 1973. Rudolf Jaenisch created the first GM animal when he inserted foreign DNA into a mouse in 1974. The first company to focus on genetic engineering, Genentech, was founded in 1976 and began the production of human proteins. Genetically engineered human insulin was produced in 1978, and insulin-producing bacteria were commercialised in 1982. Genetically modified food has been sold since 1994, with the release of the Flavr Savr tomato. The Flavr Savr was engineered to have a longer shelf life, but most current GM crops are modified to increase resistance to insects and herbicides. GloFish, the first GMO designed as a pet, was sold in the United States in December 2003. In 2016, salmon modified with a growth hormone were sold.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Genetic engineering in the context of Cultivar

A cultivar is a kind of cultivated plant that people have selected for desired traits and which retains those traits when propagated. Methods used to propagate cultivars include division, root and stem cuttings, offsets, grafting, tissue culture, or carefully controlled seed production. Most cultivars arise from deliberate human manipulation, but some originate from wild plants that have distinctive characteristics. Cultivar names are chosen according to rules of the International Code of Nomenclature for Cultivated Plants (ICNCP), and not all cultivated plants qualify as cultivars. Horticulturists generally believe the word cultivar was coined as a term meaning "cultivated variety".

Popular ornamental plants like roses, camellias, daffodils, rhododendrons, and azaleas are commonly cultivars produced by breeding and selection or as sports, for floral colour or size, plant form, or other desirable characteristics. Similarly, the world's agricultural food crops are almost exclusively cultivars that have been selected for characters such as improved yield, flavour, and resistance to disease. Since the advent of genetic engineering in the 1970s and the rise of its application in crop breeding in the 1980s, very few wild plants are used as commercial food sources. Trees used in forestry are also special selections grown for their enhanced quality and yield of timber, for example American timber company Weyerhaeuser is the leading grower of genetically modified Douglas-fir trees, one of the most commonly harvested trees.

↑ Return to Menu

Genetic engineering in the context of Rice

Rice is a cereal grain and in its domesticated form is the staple food of over half of the world's population, particularly in Asia and Africa. Rice is the seed of the grass species Oryza sativa (Asian rice)—or, much less commonly, Oryza glaberrima (African rice). Asian rice was domesticated in China some 13,500 to 8,200 years ago; African rice was domesticated in Africa about 3,000 years ago. Rice has become commonplace in many cultures worldwide; in 2023, 800 million tons were produced, placing it third after sugarcane and maize. Only some 8% of rice is traded internationally. China, India, and Indonesia are the largest consumers of rice. A substantial amount of the rice produced in developing nations is lost after harvest through factors such as poor transport and storage. Rice yields can be reduced by pests including insects, rodents, and birds, as well as by weeds, and by diseases such as rice blast. Traditional rice polycultures such as rice-duck farming, and modern integrated pest management seek to control damage from pests in a sustainable way.

Dry rice grain is milled to remove the outer layers; depending on how much is removed, products range from brown rice to rice with germ and white rice. Some is parboiled to make it easy to cook. Rice contains no gluten; it provides protein but not all the essential amino acids needed for good health. Rice of different types is eaten around the world. The composition of starch components within the grain, amylose and amylopectin, gives it different texture properties. Long-grain rice, from the Indica cultivar, tends to stay intact on cooking, and is dry and fluffy. The aromatic rice varieties, such as basmati and jasmine, are widely used in Asian cooking, and distinguished by their bold and nutty flavor profile. Medium-grain rice, from either the Japonica or Indica cultivar, or a hybrid of both, is moist and tender and tends to stick together. Its varieties include Calrose, which founded the Californian rice industry, Carnaroli, attributed as the king of Italian rice due to its excellent cooking properties, and black rice, which looks dark purple due to high levels of anthocyanins, and is also known as forbidden rice as it was reserved for the consumption of the royal family in ancient China. Short-grain rice, primarily from the Japonica cultivar, has an oval appearance and sticky texture. It is featured heavily in Japanese cooking such as sushi (with rice such as Koshihikari, Hatsushimo, and Sasanishiki, unique to different regions of climate and geography in Japan), as it keeps its shape when cooked. It is also used for sweet dishes such as mochi (with glutinous rice), and in European cuisine such as risotto (with arborio rice) and paella (with bomba rice, which is actually an Indica variety). Cooked white rice contains 29% carbohydrate and 2% protein, with some manganese. Golden rice is a variety produced by genetic engineering to contain vitamin A.

↑ Return to Menu

Genetic engineering in the context of Industrial agriculture

Industrial agriculture is a form of modern farming that refers to the industrialized production of crops and animals and animal products like eggs or milk. The methods of industrial agriculture include innovation in agricultural machinery and farming methods, genetic technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, the application of patent protection to genetic information, and global trade. These methods are widespread in developed nations and increasingly prevalent worldwide. Most of the meat, dairy, eggs, fruits and vegetables available in supermarkets are produced in this way.

↑ Return to Menu

Genetic engineering in the context of History of technology

The history of technology is the history of the invention of tools and techniques by humans. Technology includes methods ranging from simple stone tools to the complex genetic engineering and information technology that has emerged since the 1980s. The term technology comes from the Greek word techne, meaning art and craft, and the word logos, meaning word and speech. It was first used to describe applied arts, but it is now used to describe advancements and changes that affect the environment around us.

New knowledge has enabled people to create new tools, and conversely, many scientific endeavors are made possible by new technologies, for example scientific instruments which allow us to study nature in more detail than our natural senses.

↑ Return to Menu

Genetic engineering in the context of Philosophy of biology

The philosophy of biology is a subfield of philosophy of science, which deals with epistemological, metaphysical, and ethical issues in the biological and biomedical sciences. Although philosophers of science and philosophers generally have long been interested in biology (e.g., Aristotle, Descartes, and Kant), philosophy of biology only emerged as an independent field of philosophy in the 1960s and 1970s, associated with the research of David Hull. Philosophers of science then began paying increasing attention to biology, from the rise of Neodarwinism in the 1930s and 1940s to the discovery of the structure of DNA in 1953 to more recent advances in genetic engineering.Other key ideas include the reduction of all life processes to biochemical reactions, and the incorporation of psychology into a broader neuroscience.

↑ Return to Menu

Genetic engineering in the context of Golden rice

Golden rice is a variety of rice (Oryza sativa) produced through genetic engineering to biosynthesize beta-carotene, a precursor of vitamin A, in the edible parts of the rice. It is intended to produce a fortified food to be grown and consumed in areas with a shortage of dietary vitamin A. Genetically modified golden rice can produce up to 23 times as much beta-carotene as the original golden rice.

Golden rice is generally considered to be safe, with the FDA, Health Canada, International Rice Research Institute and the Bill & Melinda Gates Foundation supporting its use. It has been met with significant opposition from some environmental and anti-globalisation activists, alleging risks regarding biodiversity and expressing concerns about unforeseen health effects and socioeconomic impacts. In 2016, 107 Nobel laureates wrote an open letter to Greenpeace and its supporters, asking them to abandon their campaign against genetically modified crops in general and golden rice in particular. In 2024, the Filipino Court of Appeals issued a cease and desist order for the growth of golden rice in the country, citing a lack of scientific certainty regarding its health and environmental impact.

↑ Return to Menu

Genetic engineering in the context of Living medicine

A living medicine is a type of biologic that consists of a living organism that is used to treat a disease. This usually takes the form of a cell (animal, bacterial, or fungal) or a virus that has been genetically engineered to possess therapeutic properties that is injected into a patient. Perhaps the oldest use of a living medicine is the use of leeches for bloodletting, though living medicines have advanced tremendously since that time.

Examples of living medicines include cellular therapeutics (including immunotherapeutics), phage therapeutics, and bacterial therapeutics, a subset of the latter being probiotics.

↑ Return to Menu

Genetic engineering in the context of Genome editing

Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly insert genetic material into a host genome, genome editing targets the insertions to site-specific locations. The basic mechanism involved in genetic manipulations through programmable nucleases is the recognition of target genomic loci and binding of effector DNA-binding domain (DBD), double-strand breaks (DSBs) in target DNA by the restriction endonucleases (FokI and Cas), and the repair of DSBs through homology-directed recombination (HDR) or non-homologous end joining (NHEJ).

↑ Return to Menu

Genetic engineering in the context of Industrial agriculture (crops)

Intensive crop farming is a modern industrialized form of crop farming. Intensive crop farming's methods include innovation in agricultural machinery, farming methods, genetic engineering technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, patent protection of genetic information, and global trade. These methods are widespread in developed nations.

The practice of industrial agriculture is a relatively recent development in the history of agriculture, and the result of scientific discoveries and technological advances. Innovations in agriculture beginning in the late 19th century generally parallel developments in mass production in other industries that characterized the latter part of the Industrial Revolution. The identification of nitrogen and phosphorus as critical factors in plant growth led to the manufacture of synthetic fertilizers, making more intensive uses of farmland for crop production possible.

↑ Return to Menu