Gene flow in the context of "Genetic drift"

Play Trivia Questions online!

or

Skip to study material about Gene flow in the context of "Genetic drift"

Ad spacer

⭐ Core Definition: Gene flow

In population genetics, gene flow (also known as migration and allele flow) is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population. It has been shown that it takes only "one migrant per generation" to prevent populations from diverging due to drift. Populations can diverge due to selection even when they are exchanging alleles, if the selection pressure is strong enough. Gene flow is an important mechanism for transferring genetic diversity among populations. Migrants change the distribution of genetic diversity among populations, by modifying allele frequencies (the proportion of members carrying a particular variant of a gene). High rates of gene flow can reduce the genetic differentiation between the two groups, increasing homogeneity. Gene flow has been thought to constrain speciation and prevent range expansion by combining the gene pools of the groups, thus preventing the development of differences in genetic variation that would have led to differentiation and adaptation for this reason. In some cases dispersal resulting in gene flow may also result in the addition of novel genetic variants under positive selection to the gene pool of a species or population (adaptive introgression.)

There are a number of factors that affect the rate of gene flow between different populations. Gene flow is expected to be lower in species that have low dispersal or mobility, that occur in fragmented habitats, where there are long distances between populations, and when there are small population sizes. Mobility plays an important role in dispersal rate, as highly mobile individuals tend to have greater movement prospects. Although animals are thought to be more mobile than plants, pollen and seeds may be carried great distances by animals, water or wind. When gene flow is impeded, there can be an increase in inbreeding, measured by the inbreeding coefficient (F) within a population. For example, many island populations have low rates of gene flow due to geographic isolation and small population sizes. The Black Footed Rock Wallaby has several inbred populations that live on various islands off the coast of Australia. The population is so strongly isolated that lack of gene flow has led to high rates of inbreeding.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Gene flow in the context of Evolutionary biology

Evolutionary biology is a subfield of biology that analyzes the four mechanisms of evolution: natural selection, mutation, genetic drift, and gene flow. The purpose of evolutionary biology is to observe the diversity of life on Earth. The idea of natural selection was first researched by Charles Darwin as he studied bird beaks. The discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics, and paleontology. Huxley was able to take what Charles Darwin discovered and elaborate to build on his understandings.

The investigational range of current research has widened to encompass the genetic architecture of adaptation, molecular evolution, and the different forces that contribute to evolution, such as sexual selection, genetic drift, and biogeography. The newer field of evolutionary developmental biology ("evo-devo") investigates how embryogenesis is controlled, thus yielding a wider synthesis that integrates developmental biology with the fields of study covered by the earlier evolutionary synthesis.

↑ Return to Menu

Gene flow in the context of Allopatric speciation

Allopatric speciation (from Ancient Greek ἄλλος (állos) 'other' and πατρίς (patrís) 'fatherland') – also called geographic speciation, vicariant speciation, or its earlier name the dumbbell model – is a mode of speciation that occurs when biological populations become geographically isolated from each other to an extent that prevents or interferes with gene flow.

Various geographic changes can arise such as the movement of continents, and the formation of mountains, islands, bodies of water, or glaciers. Human activity such as agriculture or developments can also change the distribution of species populations. These factors can substantially alter a region's geography, resulting in the separation of a species population into isolated subpopulations. The vicariant populations then undergo genetic changes as they become subjected to different selective pressures, experience genetic drift, and accumulate different mutations in the separated populations' gene pools. The barriers prevent the exchange of genetic information between the two populations leading to reproductive isolation. If the two populations come into contact they will be unable to reproduce—effectively speciating. Other isolating factors such as population dispersal leading to emigration can cause speciation (for instance, the dispersal and isolation of a species on an oceanic island) and is considered a special case of allopatric speciation called peripatric speciation.

↑ Return to Menu

Gene flow in the context of Ring species

In biology, a ring species is a connected series of neighbouring populations, each of which interbreeds with closely sited related populations, but for which there exist at least two end populations in the series which are too distantly related to interbreed, though there is a potential gene flow between linked neighbouring populations. Such non-breeding, though genetically connected, end populations may co-exist in the same region (sympatry) thus closing a ring. The German term Rassenkreis, meaning "circle of races", is also used.

Ring species represent speciation and have been cited as evidence of evolution. They illustrate what happens over time as populations genetically diverge, specifically because they represent, in living populations, what normally happens over time between long-deceased ancestor populations and living populations, in which the intermediates have become extinct. The evolutionary biologist Richard Dawkins remarks that ring species "are only showing us in the spatial dimension something that must always happen in the time dimension".

↑ Return to Menu

Gene flow in the context of Mechanism (biology)

In biology, a mechanism is a system of causally interacting parts and processes that produce one or more effects. Phenomena can be explained by describing their mechanisms. For example, natural selection is a mechanism of evolution; other mechanisms of evolution include genetic drift, mutation, and gene flow. In ecology, mechanisms such as predation and host-parasite interactions produce change in ecological systems. In practice, no description of a mechanism is ever complete because not all details of the parts and processes of a mechanism are fully known. For example, natural selection is a mechanism of evolution that includes countless, inter-individual interactions with other individuals, components, and processes of the environment in which natural selection operates.

↑ Return to Menu

Gene flow in the context of Genetic divergence

Genetic divergence is the process in which two or more populations of an ancestral species accumulate independent genetic changes (mutations) through time, often leading to reproductive isolation and continued mutation even after the populations have become reproductively isolated for some period of time, as there is not any genetic exchange anymore. In some cases, subpopulations cover living in ecologically distinct peripheral environments can exhibit genetic divergence from the remainder of a population, especially where the range of a population is very large (see parapatric speciation). The genetic differences among divergent populations can involve silent mutations (that have no effect on the phenotype) or give rise to significant morphological and/or physiological changes. Genetic divergence will always accompany reproductive isolation, either due to novel adaptations via selection and/or due to genetic drift, and is the principal mechanism underlying speciation.

On a molecular genetics level, genetic divergence is due to changes in a small number of genes in a species, resulting in speciation. However, researchers argue that it is unlikely that divergence is a result of a significant, single, dominant mutation in a genetic locus because if that were so, the individual with that mutation would have zero fitness. Consequently, they could not reproduce and pass the mutation on to further generations. Hence, it is more likely that divergence, and subsequently reproductive isolation, are the outcomes of multiple small mutations over evolutionary time accumulating in a population isolated from gene flow.

↑ Return to Menu

Gene flow in the context of Genetic admixture

Genetic admixture occurs when previously isolated populations of organisms interbreed, resulting in a population with genetic ancestry from both sources. It can occur between species, such as with hybrids, or within species, such as when geographically distant individuals migrate to new regions. It results in a population with genetic backgrounds, or a gene pool, that is a mix of the source populations. Genetic admixture is recognized as an important contributor to rapid evolutionary responses, both at the level of gene flow between populations and between species.

↑ Return to Menu

Gene flow in the context of Biological dispersal

Biological dispersal refers to both the movement of individuals (animals, plants, fungi, bacteria, etc.) from their birth site to their breeding site ('natal dispersal') and the movement from one breeding site to another ('breeding dispersal'). The term also encompasses the movement of propagules such as seeds and spores. Technically, dispersal is defined as any movement that has the potential to lead to gene flow. The act of dispersal involves three phases: departure, transfer, and settlement. Each phase is associated with distinct fitness costs and benefits. By simply moving from one habitat patch to another, an individual's dispersal can influence not only its own fitness but also broader processes such as population dynamics, population genetics, and species distribution. Understanding dispersal and its consequences, both for evolutionary strategies at a species level and for processes at an ecosystem level, requires understanding on the type of dispersal, the dispersal range of a given species, and the dispersal mechanisms involved. Biological dispersal can be correlated to population density. The range of variations of a species' location determines the expansion range.

Biological dispersal may be contrasted with geodispersal, which refers to the mixing of previously isolated populations (or entire biotas) following the erosion of geographic barriers to dispersal or gene flow.

↑ Return to Menu

Gene flow in the context of Reproductive isolation

The mechanisms of reproductive isolation are a collection of evolutionary mechanisms, behaviors and physiological processes critical for speciation. They prevent members of different species from producing offspring, or ensure that any offspring are sterile. These barriers maintain the integrity of a species by reducing gene flow between related species.

The mechanisms of reproductive isolation have been classified in a number of ways. Zoologist Ernst Mayr classified the mechanisms of reproductive isolation in two broad categories: pre-zygotic for those that act before fertilization (or before mating in the case of animals) and post-zygotic for those that act after it. The mechanisms are genetically controlled and can appear in species whose geographic distributions overlap (sympatric speciation) or are separate (allopatric speciation).

↑ Return to Menu

Gene flow in the context of Peripatric speciation

Peripatric speciation is a mode of speciation in which a new species is formed from an isolated peripheral population. Since peripatric speciation resembles allopatric speciation, in that populations are isolated and prevented from exchanging genes, it can often be difficult to distinguish between them, and peripatric speciation may be considered one type or model of allopatric speciation. The primary distinguishing characteristic of peripatric speciation is that one of the populations is much smaller than the other, as opposed to (other types of) allopatric speciation, in which similarly-sized populations become separated. The terms peripatric and peripatry are often used in biogeography, referring to organisms whose ranges are closely adjacent but do not overlap, being separated where these organisms do not occur—for example on an oceanic island compared to the mainland. Such organisms are usually closely related (e.g. sister species); their distribution being the result of peripatric speciation.

The concept of peripatric speciation was first outlined by the evolutionary biologist Ernst Mayr in 1954. Since then, other alternative models have been developed such as centrifugal speciation, that posits that a species' population experiences periods of geographic range expansion followed by shrinking periods, leaving behind small isolated populations on the periphery of the main population. Other models have involved the effects of sexual selection on limited population sizes. Other related models of peripherally isolated populations based on chromosomal rearrangements have been developed such as budding speciation and quantum speciation.

↑ Return to Menu