Gene-environment interaction in the context of "Environmental factors"

Play Trivia Questions online!

or

Skip to study material about Gene-environment interaction in the context of "Environmental factors"

Ad spacer

⭐ Core Definition: Gene-environment interaction

Gene–environment interaction (or genotype–environment interaction or G×E) is when two different genotypes respond to environmental variation in different ways. A norm of reaction is a graph that shows the relationship between genes and environmental factors when phenotypic differences are continuous. They can help illustrate GxE interactions. When the norm of reaction is not parallel, as shown in the figure below, there is a gene by environment interaction. This indicates that each genotype responds to environmental variation in a different way. Environmental variation can be physical, chemical, biological, behavior patterns or life events.

Gene–environment interactions are studied to gain a better understanding of various phenomena. In genetic epidemiology, gene–environment interactions are useful for understanding some diseases. Sometimes, sensitivity to environmental risk factors for a disease are inherited rather than the disease itself being inherited. Individuals with different genotypes are affected differently by exposure to the same environmental factors, and thus gene–environment interactions can result in different disease phenotypes. For example, sunlight exposure has a stronger influence on skin cancer risk in fair-skinned humans than in individuals with darker skin.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Gene-environment interaction in the context of Human behavior genetics

Human behaviour genetics is an interdisciplinary subfield of behaviour genetics that studies the role of genetic and environmental influences on human behaviour. Classically, human behavioural geneticists have studied the inheritance of behavioural traits. The field was originally focused on determining the importance of genetic influences on human behaviour (for e.g., do genes regulate human behavioural attributes). It has evolved to address more complex questions such as: how important are genetic and/or environmental influences on various human behavioural traits; to what extent do the same genetic and/or environmental influences impact the overlap between human behavioural traits; how do genetic and/or environmental influences on behaviour change across development; and what environmental factors moderate the importance of genetic effects on human behaviour (gene-environment interaction). The field is interdisciplinary, and draws from genetics, psychology, and statistics. Most recently, the field has moved into the area of statistical genetics, with many behavioural geneticists also involved in efforts to identify the specific genes involved in human behaviour, and to understand how the effects associated with these genes changes across time, and in conjunction with the environment.

Traditionally, the human behavioural genetics were a psychology and phenotype based studies including intelligence, personality and grasping ability. During the years, the study developed beyond the classical traits of human behaviour and included more genetically associated traits like genetic disorders (such as fragile X syndrome, Alzheimer's disease and obesity). The traditional methods of behavioural-genetic analysis provide a quantitative evaluation of genetic and non-genetic influences on human behaviour. The family, twin and adoption studies marks the huge contribution for laying down the foundation for current molecular genetic studies to study human behaviour.

↑ Return to Menu