Gaseous state in the context of "Compressibility"

Play Trivia Questions online!

or

Skip to study material about Gaseous state in the context of "Compressibility"

Ad spacer

⭐ Core Definition: Gaseous state

Gas is a state of matter with neither fixed volume nor fixed shape. It is a compressible form of fluid, in contrast to a liquid. A pure gas consists of individual atoms (e.g. a noble gas like neon), or molecules (e.g. oxygen (O2) or carbon dioxide). Pure gases can also be mixed together such as in the air. What distinguishes gases from liquids and solids is the vast separation of the individual gas particles. This separation can make some gases invisible to the human observer.

The gaseous state of matter occurs between the liquid and plasma states, the latter of which provides the upper-temperature boundary for gases. Bounding the lower end of the temperature scale lie degenerative quantum gases which are gaining increasing attention.High-density atomic gases super-cooled to very low temperatures are classified by their statistical behavior as either Bose gases or Fermi gases. For a comprehensive listing of these exotic states of matter, see list of states of matter.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Gaseous state in the context of Compressed hydrogen

Compressed hydrogen (CH2, CGH2 or CGH2) is the gaseous state of the element hydrogen kept under pressure. Compressed hydrogen in hydrogen tanks at 350 bar (5,000 psi) and 700 bar (10,000 psi) is used for mobile hydrogen storage in hydrogen vehicles. It is used as a fuel gas.

↑ Return to Menu

Gaseous state in the context of Lattice energy

In chemistry, the lattice energy is the energy change (released) upon formation of one mole of a crystalline compound from its infinitely separated constituents, which are assumed to initially be in the gaseous state at 0 K. It is a measure of the cohesive forces that bind crystalline solids. The size of the lattice energy is connected to many other physical properties including solubility, hardness, and volatility. Since it generally cannot be measured directly, the lattice energy is usually deduced from experimental data via the Born–Haber cycle.

↑ Return to Menu