Garbage collection (computer science) in the context of Garbage (computer science)


Garbage collection (computer science) in the context of Garbage (computer science)

Garbage collection (computer science) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Garbage collection (computer science) in the context of "Garbage (computer science)"


⭐ Core Definition: Garbage collection (computer science)

In computer science, garbage collection (GC) is a form of automatic memory management. The garbage collector attempts to reclaim memory that was allocated by the program, but is no longer referenced; such memory is called garbage. Garbage collection was invented by American computer scientist John McCarthy around 1959 to simplify manual memory management in Lisp.

Garbage collection relieves the programmer from doing manual memory management, where the programmer specifies what objects to de-allocate and return to the memory system and when to do so. Other, similar techniques include stack allocation, region inference, and memory ownership, and combinations thereof. Garbage collection may take a significant proportion of a program's total processing time, and affect performance as a result.

↓ Menu
HINT:

In this Dossier

Garbage collection (computer science) in the context of Dynamic allocation

In computer science, manual memory management refers to the usage of manual instructions by the programmer to identify and deallocate unused objects, or garbage. Up until the mid-1990s, the majority of programming languages used in industry supported manual memory management, though garbage collection has existed since 1959, when it was introduced with Lisp Today, however, languages with garbage collection such as Java are increasingly popular and the languages Objective-C and Swift provide similar functionality through Automatic Reference Counting. The main manually managed languages still in widespread use today are C and C++ – see C dynamic memory allocation.

View the full Wikipedia page for Dynamic allocation
↑ Return to Menu

Garbage collection (computer science) in the context of Runtime system

In computer programming, a runtime system or runtime environment is a sub-system that exists in the computer where a program is created, as well as in the computers where the program is intended to be run. The name comes from the compile time and runtime division from compiled languages, which similarly distinguishes the computer processes involved in the creation of a program (compilation) and its execution in the target machine (the runtime).

Most programming languages have some form of runtime system that provides an environment in which programs run. This environment may address a number of issues including the management of application memory, how the program accesses variables, mechanisms for passing parameters between procedures, interfacing with the operating system (OS), among others. The compiler makes assumptions depending on the specific runtime system to generate correct code. Typically the runtime system will have some responsibility for setting up and managing the stack and heap, and may include features such as garbage collection, threads or other dynamic features built into the language.

View the full Wikipedia page for Runtime system
↑ Return to Menu

Garbage collection (computer science) in the context of Lisp programming language

Lisp (historically LISP, an abbreviation of "list processing") is a family of programming languages with a long history and a distinctive, fully parenthesized prefix notation.Originally specified in the late 1950s, it is the second-oldest high-level programming language still in common use, after Fortran. Lisp has changed since its early days, and many dialects have existed over its history. Today, the best-known general-purpose Lisp dialects are Common Lisp, Scheme, Racket, and Clojure.

Lisp was originally created as a practical mathematical notation for computer programs, influenced by (though not originally derived from) the notation of Alonzo Church's lambda calculus. It quickly became a favored programming language for artificial intelligence (AI) research. As one of the earliest programming languages, Lisp pioneered many ideas in computer science, including tree data structures, automatic storage management, dynamic typing, conditionals, higher-order functions, recursion, the self-hosting compiler, and the read–eval–print loop.

View the full Wikipedia page for Lisp programming language
↑ Return to Menu

Garbage collection (computer science) in the context of Python (programming language)

Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. Python is dynamically type-checked and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional programming.

Guido van Rossum began working on Python in the late 1980s as a successor to the ABC programming language. Python 3.0, released in 2008, was a major revision and not completely backward-compatible with earlier versions. Beginning with Python 3.5, capabilities and keywords for typing were added to the language, allowing optional static typing. As of 2025, the Python Software Foundation supports Python 3.10, 3.11, 3.12, 3.13, and 3.14, following the projects annual release cycle and five-year support policy. Earlier versions in the 3.x series have reached end-of-life and no longer receive security updates.

View the full Wikipedia page for Python (programming language)
↑ Return to Menu

Garbage collection (computer science) in the context of Ruby (programming language)

Ruby is a general-purpose programming language. It was designed with an emphasis on programming productivity and simplicity. In Ruby, everything is an object, including primitive data types. It was developed in the mid-1990s by Yukihiro "Matz" Matsumoto in Japan.

Ruby is interpreted, high-level, and dynamically typed; its interpreter uses garbage collection and just-in-time compilation. It supports multiple programming paradigms, including procedural, object-oriented, and functional programming. According to the creator, Ruby was influenced by Perl, Smalltalk, Eiffel, Ada, BASIC, and Lisp.

View the full Wikipedia page for Ruby (programming language)
↑ Return to Menu

Garbage collection (computer science) in the context of John McCarthy (computer scientist)

John McCarthy (September 4, 1927 – October 24, 2011) was an American computer scientist and cognitive scientist. He was one of the founders of the discipline of artificial intelligence, and part of just a small group of artificial intelligence researchers in the 1950s and 1960s. He co-authored the proposal for the Dartmouth workshop which coined the term "artificial intelligence" (AI), led the development of the symbolic programming language family Lisp and had a large influence in the language ALGOL, popularized time-sharing, and created garbage collection.

McCarthy spent most of his career at Stanford University. He received many accolades and honors, such as the 1971 Turing Award for his contributions to the topic of AI, the United States National Medal of Science, and the Kyoto Prize.

View the full Wikipedia page for John McCarthy (computer scientist)
↑ Return to Menu

Garbage collection (computer science) in the context of Simula

Simula is the name of two simulation programming languages, Simula I and Simula 67, developed in the 1960s at the Norwegian Computing Center in Oslo, by Ole-Johan Dahl and Kristen Nygaard. Syntactically, it is an approximate superset of ALGOL 60,and was also influenced by the design of SIMSCRIPT.

Simula 67 introduced objects, classes, inheritance and subclasses, virtual procedures, coroutines, and discrete event simulation, and featured garbage collection. Other forms of subtyping (besides inheriting subclasses) were introduced in Simula derivatives.

View the full Wikipedia page for Simula
↑ Return to Menu