Gamma Doradus variable in the context of "Light curve"

Play Trivia Questions online!

or

Skip to study material about Gamma Doradus variable in the context of "Light curve"




⭐ Core Definition: Gamma Doradus variable

Gamma Doradus variables are variable stars which display variations in luminosity due to non-radial pulsations of their surface. The stars are typically young, early F or late A type main sequence stars, and typical brightness fluctuations are 0.1 magnitudes with periods on the order of one day. This class of variable stars is relatively new, having been first characterized in the second half of the 1990s, and details on the underlying physical cause of the variations remains under investigation.

The star 9 Aurigae was first noticed to be variable in 1990. However, none of the currently-accepted explanations were adequate: it pulsated too slowly and was outside of the Delta Scuti instability strip, and there was no evidence for any eclipsing material, although Gamma Doradus and HD 96008 were noted to be similar. These three stars, as well as HD 224638, were soon hypothesized to belong to a new class of variable stars in which variability was produced by g-mode pulsations rather than the p-mode pulsations of Delta Scuti variables. HD 224945 and HD 164615 were noticed to be similar as well, while HD 96008 was ruled out on the basis of its more regular period. Eclipses and starspots were soon ruled out as the cause of the Gamma Doradus' variability, and the variability of 9 Aurigae was confirmed to be caused by g-mode pulsations a year later, thus confirming the stars as the prototypes of a new class of variable stars. Over ten more candidates were quickly found, and the discoverers dubbed the group the Gamma Doradus stars, after the brightest member and the first member found to be variable.

↓ Menu

In this Dossier

Gamma Doradus variable in the context of HR 8799

HR 8799 is a roughly 30 million-year-old main-sequence star located 133.3 light-years (40.9 parsecs) away from Earth in the constellation of Pegasus. It has roughly 1.5 times the Sun's mass and 4.9 times its luminosity. It is part of a system that also contains a debris disk and at least four massive planets. These planets were the first exoplanets whose orbital motion was confirmed by direct imaging. The star is a Gamma Doradus variable: its luminosity changes because of non-radial pulsations of its surface. The star is also classified as a Lambda Boötis star, which means its surface layers are depleted in iron peak elements. It is the only known star which is simultaneously a Gamma Doradus variable, a Lambda Boötis type, and a Vega-like star (a star with excess infrared emission caused by a circumstellar disk).

↑ Return to Menu