Gamma-ray in the context of Gamma spectroscopy


Gamma-ray in the context of Gamma spectroscopy

Gamma-ray Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Gamma-ray in the context of "Gamma spectroscopy"


⭐ Core Definition: Gamma-ray

A gamma ray, also known as gamma radiation (symbol γ), is a penetrating form of electromagnetic radiation arising from high-energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. Lower energy gamma radiation overlaps the upper end of X-ray radiation; they are distinguished by their different origins. Gamma ray photons have photon energy at the lower end from 10keV to 10,000 keV; ultra-high-energy gamma rays have energies over 10 keV. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900, he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.

Gamma rays from radioactive decay are in the energy range from ten kiloelectronvolts (keV) to 10 megaelectronvolts (MeV), corresponding to the typical energy levels in nuclei with reasonably long lifetimes. The energy spectrum of gamma rays can be used to identify the decaying radionuclides using gamma spectroscopy. Very-high-energy gamma rays in the 100–1000 teraelectronvolt (TeV) range have been observed from astronomical sources such as the Cygnus X-3 microquasar.

↓ Menu
HINT:

In this Dossier

Gamma-ray in the context of Cygnus X-3

Cygnus X-3 is a high-mass X-ray binary (HMXB), one of the stronger binary X-ray sources in the sky. It is often considered to be a microquasar, and it is believed to be a compact object in a binary system which is pulling in a stream of gas from an ordinary star companion. It is one of only two known HMXBs containing a Wolf–Rayet star. It is invisible visually, but can be observed at radio, infrared, X-ray, and gamma-ray wavelengths.

View the full Wikipedia page for Cygnus X-3
↑ Return to Menu

Gamma-ray in the context of Positronium

Positronium (Ps) is a system consisting of an electron and its anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two particles annihilate each other to predominantly produce two or three gamma-rays, depending on the relative spin states. The energy levels of the two particles are similar to that of the hydrogen atom (which is a bound state of a proton and an electron). However, because of the reduced mass, the frequencies of the spectral lines are less than half of those for the corresponding hydrogen lines.

View the full Wikipedia page for Positronium
↑ Return to Menu

Gamma-ray in the context of PSR J0952–0607

PSR J0952−0607 is a massive millisecond pulsar in a binary system, located between 3,200–5,700 light-years (970–1,740 pc) from Earth in the constellation Sextans. As of 2022, it holds the record for being the most massive neutron star known, with a mass 2.35±0.17 times that of the Sun—potentially close to the Tolman–Oppenheimer–Volkoff mass upper limit for neutron stars. The pulsar rotates at a frequency of 707.31 Hz (a period of 1.4137 ms), making it the second-fastest-spinning pulsar known, and the fastest-spinning pulsar known within the Milky Way.

PSR J0952−0607 was discovered by the Low-Frequency Array (LOFAR) radio telescope during a search for pulsars in 2016. It is classified as a black widow pulsar, a type of pulsar harboring a closely-orbiting substellar-mass companion that is being ablated by the pulsar's intense high-energy solar winds and gamma-ray emissions. The pulsar's high-energy emissions have been detected in gamma-ray and X-ray wavelengths.

View the full Wikipedia page for PSR J0952–0607
↑ Return to Menu