Gallium in the context of Chemical symbol


Gallium in the context of Chemical symbol

Gallium Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Gallium in the context of "Chemical symbol"


⭐ Core Definition: Gallium

Gallium is a chemical element; it has symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in Paris, France, 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. In its liquid state, it becomes silvery white. If enough force is applied, solid gallium may fracture conchoidally. Since its discovery in 1875, gallium has widely been used to make alloys with low melting points. It is also used in semiconductors, as a dopant in semiconductor substrates.

The melting point of gallium, 29.7646 °C (85.5763 °F; 302.9146 K), is used as a temperature reference point. Gallium alloys are used in thermometers as a non-toxic and environmentally friendly alternative to mercury, and can withstand higher temperatures than mercury. A melting point of −19 °C (−2 °F), well below the freezing point of water, is claimed for the alloy galinstan (62–⁠95% gallium, 5–⁠22% indium, and 0–⁠16% tin by weight), but that may be the freezing point with the effect of supercooling.

↓ Menu
HINT:

In this Dossier

Gallium in the context of Mercury (element)

Mercury is a chemical element; it has symbol Hg and atomic number 80. It is commonly known as quicksilver. A heavy, silvery d-block element, mercury is the only metallic element that is known to be liquid at standard temperature and pressure; the only other element that is liquid under these conditions is bromine, one of the halogens, though metals such as caesium, gallium, and rubidium melt just above room temperature.

Mercury occurs in deposits throughout the world mostly as cinnabar (mercuric sulfide). The red pigment vermilion is obtained by grinding natural cinnabar or synthetic mercuric sulfide. Exposure to mercury and mercury-containing organic compounds is toxic to the nervous system, immune system and kidneys of humans and other animals; mercury poisoning can result from exposure to water-soluble forms of mercury (such as mercuric chloride or methylmercury) either directly or through mechanisms of biomagnification.

View the full Wikipedia page for Mercury (element)
↑ Return to Menu

Gallium in the context of Bauxite

Bauxite (/ˈbɔːkst/ ) is a sedimentary rock with a relatively high aluminium content. It is the world's main source of aluminium and gallium. Bauxite consists mostly of the aluminium minerals gibbsite (Al(OH)3), boehmite (γ-AlO(OH)), and diaspore (α-AlO(OH)), mixed with the two iron oxides goethite (FeO(OH)) and hematite (Fe2O3), the aluminium clay mineral kaolinite (Al2Si2O5(OH)4) and small amounts of anatase (TiO2) and ilmenite (FeTiO3 or FeO·TiO2).Bauxite appears dull in luster and is reddish-brown, white, or tan.

In 1821, the French geologist Pierre Berthier discovered bauxite near the village of Les Baux in Provence, southern France.

View the full Wikipedia page for Bauxite
↑ Return to Menu

Gallium in the context of Metallic bonding

Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be described as the sharing of free electrons among a structure of positively charged ions (cations). Metallic bonding accounts for many physical properties of metals, such as strength, ductility, thermal and electrical resistivity and conductivity, opacity, and lustre.

Metallic bonding is not the only type of chemical bonding a metal can exhibit, even as a pure substance. For example, elemental gallium consists of covalently-bound pairs of atoms in both liquid and solid-state—these pairs form a crystal structure with metallic bonding between them. Another example of a metal–metal covalent bond is the mercurous ion (Hg
2
).

View the full Wikipedia page for Metallic bonding
↑ Return to Menu

Gallium in the context of Gallium arsenide

↑ Return to Menu

Gallium in the context of Heavy metal element

Heavy metals is a controversial and ambiguous term for metallic elements with relatively high densities, atomic weights, or atomic numbers. The criteria used, and whether metalloids are included, vary depending on the author and context, and arguably, the term "heavy metal" should be avoided. A heavy metal may be defined on the basis of density, atomic number, or chemical behaviour. More specific definitions have been published, none of which has been widely accepted. The definitions surveyed in this article encompass up to 96 of the 118 known chemical elements; only mercury, lead, and bismuth meet all of them. Despite this lack of agreement, the term (plural or singular) is widely used in science. A density of more than 5 g/cm is sometimes quoted as a commonly used criterion and is used in the body of this article.

The earliest known metals—common metals such as iron, copper, and tin, and precious metals such as silver, gold, and platinum—are heavy metals. From 1809 onward, light metals, such as magnesium, aluminium, and titanium, were discovered, as well as less well-known heavy metals, including gallium, thallium, and hafnium.

View the full Wikipedia page for Heavy metal element
↑ Return to Menu

Gallium in the context of Halogen

The halogens (/ˈhæləən, ˈh-, -l-, -ˌɛn/) are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors would exclude tennessine as its chemistry is unknown and is theoretically expected to be more like that of gallium. In the modern IUPAC nomenclature, this group is known as group 17.

The word "halogen" means "salt former" or "salt maker". When halogens react with metals, they produce a wide range of salts, including calcium fluoride, sodium chloride (common table salt), silver bromide, and potassium iodide.

View the full Wikipedia page for Halogen
↑ Return to Menu

Gallium in the context of Dmitri Mendeleev

Dmitri Ivanovich Mendeleev (/ˌmɛndəlˈəf/ MEN-dəl-AY-əf; 8 February [O.S. 27 January] 1834 – 2 February [O.S. 20 January] 1907) was a Russian chemist known for formulating the periodic law and creating a version of the periodic table of elements. He used the periodic law not only to correct the then-accepted properties of some known elements, such as the valence and atomic weight of uranium, but also to predict the properties of three elements that were yet to be discovered (germanium, gallium, and scandium).

View the full Wikipedia page for Dmitri Mendeleev
↑ Return to Menu

Gallium in the context of Boron group

The boron group are the chemical elements in group 13 of the periodic table, consisting of boron (B), aluminium (Al), gallium (Ga), indium (In), thallium (Tl) and nihonium (Nh). This group lies in the p-block of the periodic table. The elements in the boron group are characterized by having three valence electrons. These elements have also been referred to as the triels.

Several group 13 elements have biological roles in the ecosystem. Boron is a trace element in humans and is essential for some plants. Lack of boron can lead to stunted plant growth, while an excess can also cause harm by inhibiting growth. Aluminium has neither a biological role nor significant toxicity and is considered safe. Indium and gallium can stimulate metabolism; gallium is credited with the ability to bind itself to iron proteins. Thallium is highly toxic, interfering with the function of numerous vital enzymes, and has seen use as a pesticide.

View the full Wikipedia page for Boron group
↑ Return to Menu

Gallium in the context of Conchoidal fracture

A conchoidal fracture is a break or fracture of a brittle material that does not follow any natural planes of separation. Mindat.org defines conchoidal fracture as follows: "a fracture with smooth, curved surfaces, typically slightly concave, showing concentric undulations resembling the lines of growth of a shell". Materials that break in this way include quartz, chert, flint, quartzite, jasper, and other fine-grained or amorphous materials with a composition of pure silica, such as obsidian and window glass, as well as a few metals, such as solid gallium.

Crystalline materials such as quartz also exhibit conchoidal fractures when they lack a cleavage plane and do not break along a plane parallel to their crystalline faces. Hence, a conchoidal or uneven fracture is not a specific indication of the amorphous character of a mineral, or a material. Amorphous, cryptocrystalline, and crystalline materials can all present conchoidal fracture when they lack a preferential cleavage plane.

View the full Wikipedia page for Conchoidal fracture
↑ Return to Menu

Gallium in the context of Indium

Indium is a chemical element; it has symbol In and atomic number 49. It is a silvery-white post-transition metal and one of the softest elements. Chemically, indium is similar to gallium and thallium, and its properties are largely intermediate between the two. It was discovered in 1863 by Ferdinand Reich and Hieronymous Theodor Richter by spectroscopic methods and named for the indigo blue line in its spectrum.

Indium is used primarily in the production of flat-panel displays as indium tin oxide (ITO), a transparent and conductive coating applied to glass. It is also used in the semiconductor industry, in low-melting-point metal alloys such as solders and soft-metal high-vacuum seals. It is used in the manufacture of blue and white LED circuits, mainly to produce Indium gallium nitride p-type semiconductor substrates. It is produced exclusively as a by-product during the processing of the ores of other metals, chiefly from sphalerite and other zinc sulfide ores.

View the full Wikipedia page for Indium
↑ Return to Menu

Gallium in the context of Periodic trends

In chemistry, periodic trends are specific patterns present in the periodic table that illustrate different aspects of certain elements when grouped by period and/or group. They were discovered by the Russian chemist Dimitri Mendeleev in 1863. Major periodic trends include atomic radius, ionization energy, electron affinity, electronegativity, nucleophilicity, electrophilicity, valency, nuclear charge, and metallic character. Mendeleev built the foundation of the periodic table. Mendeleev organized the elements based on atomic weight, leaving empty spaces where he believed undiscovered elements would take their places. Mendeleev's discovery of this trend allowed him to predict the existence and properties of three unknown elements, which were later discovered by other chemists and named gallium, scandium, and germanium. English physicist Henry Moseley discovered that organizing the elements by atomic number instead of atomic weight would naturally group elements with similar properties.

View the full Wikipedia page for Periodic trends
↑ Return to Menu

Gallium in the context of Liquid metal

A liquid metal is a metal or a metal alloy which is liquid at or near room temperature.

The only stable liquid elemental metal at room temperature is mercury (Hg), which is molten above −38.8 °C (234.3 K, −37.9 °F). Three more stable elemental metals melt just above room temperature: caesium (Cs), which has a melting point of 28.5 °C (83.3 °F); gallium (Ga) (30 °C [86 °F]); and rubidium (Rb) (39 °C [102 °F]). The radioactive metal francium (Fr) is probably liquid close to room temperature as well. Calculations predict that the radioactive metals copernicium (Cn) and flerovium (Fl) should also be liquid at room temperature.

View the full Wikipedia page for Liquid metal
↑ Return to Menu

Gallium in the context of Gallium nitride

Gallium nitride (GaN) is a binary III/V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4 eV affords it special properties for applications in optoelectronics, high-power and high-frequency devices. For example, GaN is the substrate that makes violet (405 nm) laser diodes possible, without requiring nonlinear optical frequency doubling.

View the full Wikipedia page for Gallium nitride
↑ Return to Menu

Gallium in the context of Thallium

Thallium is a chemical element; it has symbol Tl and atomic number 81. It is a silvery-white post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes and Claude-Auguste Lamy discovered thallium independently, in 1861, in residues of sulfuric acid production. Both used the newly developed method of flame spectroscopy, in which thallium produces a notable green spectral line. Thallium, from Greek θαλλός, thallós, meaning "green shoot" or "twig", was named by Crookes. It was isolated by both Lamy and Crookes in 1862, Lamy by electrolysis and Crookes by precipitation and melting of the resultant powder. Crookes exhibited it as a powder precipitated by zinc at the International Exhibition, which opened on 1 May that year.

Thallium tends to form the +3 and +1 oxidation states. The +3 state resembles that of the other elements in group 13 (boron, aluminium, gallium, indium). However, the +1 state, which is far more prominent in thallium than the elements above it, recalls the chemistry of alkali metals and thallium(I) ions are found geologically mostly in potassium-based ores and (when ingested) are handled in many ways like potassium ions (K) by ion pumps in living cells.

View the full Wikipedia page for Thallium
↑ Return to Menu