Frictional force in the context of "Tribology"

Play Trivia Questions online!

or

Skip to study material about Frictional force in the context of "Tribology"

Ad spacer

⭐ Core Definition: Frictional force

Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding or grinding against each other. Types of friction include dry, fluid, lubricated, skin, and internal – an incomplete list. The study of the processes involved is called tribology, and has a history of more than 2,000 years.

Friction can have dramatic consequences, as illustrated by the use of friction created by rubbing pieces of wood together to start a fire. Another important consequence of many types of friction can be wear, which may lead to performance degradation or damage to components. It is known that frictional energy losses account for about 20% of the total energy expenditure of the world.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Frictional force in the context of Mechanical energy

In physical sciences, mechanical energy is the sum of macroscopic potential and kinetic energies. The principle of conservation of mechanical energy states that if an isolated system or a closed system is subject only to conservative forces, then the mechanical energy is constant. If an object moves in the opposite direction of a conservative net force, the potential energy will increase; and if the speed (not the velocity) of the object changes, the kinetic energy of the object also changes. In all real systems, however, nonconservative forces, such as frictional forces, will be present, but if they are of negligible magnitude, the mechanical energy changes little and its conservation is a useful approximation. In elastic collisions, the kinetic energy is conserved, but in inelastic collisions some mechanical energy may be converted into thermal energy. The equivalence between lost mechanical energy and an increase in temperature was discovered by James Prescott Joule.

Many devices are used to convert mechanical energy to or from other forms of energy, e.g. an electric motor converts electrical energy to mechanical energy, an electric generator converts mechanical energy into electrical energy and a heat engine converts heat to mechanical energy.

↑ Return to Menu