Frequency response in the context of Transition band


Frequency response in the context of Transition band

Frequency response Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Frequency response in the context of "Transition band"


⭐ Core Definition: Frequency response

In signal processing and electronics, the frequency response of a system is the quantitative measure of the magnitude and phase of the output as a function of input frequency. The frequency response is widely used in the design and analysis of systems, such as audio equipment and control systems, where they simplify mathematical analysis by converting governing differential equations into algebraic equations. In an audio system, it may be used to minimize audible distortion by designing components (such as microphones, amplifiers and loudspeakers) so that the overall response is as flat (uniform) as possible across the system's bandwidth. In control systems, such as a vehicle's cruise control, it may be used to assess system stability, often through the use of Bode plots. Systems with a specific frequency response can be designed using analog and digital filters.

The frequency response characterizes systems in the frequency domain, just as the impulse response characterizes systems in the time domain. In linear systems (or as an approximation to a real system neglecting second order non-linear properties), either response completely describes the system and thus there is a one-to-one correspondence: the frequency response is the Fourier transform of the impulse response. The frequency response allows simpler analysis of cascaded systems such as multistage amplifiers, as the response of the overall system can be found through multiplication of the individual stages' frequency responses (as opposed to convolution of the impulse response in the time domain). The frequency response is closely related to the transfer function in linear systems, which is the Laplace transform of the impulse response. They are equivalent when the real part of the transfer function's complex variable is zero.

↓ Menu
HINT:

In this Dossier

Frequency response in the context of Optical bandpass filter

An optical filter is a device that selectively transmits light of different wavelengths, usually implemented as a glass plane or plastic device in the optical path, which are either dyed in the bulk or have interference coatings. The optical properties of filters are completely described by their frequency response, which specifies how the magnitude and phase of each frequency component of an incoming signal is modified by the filter.

Filters mostly belong to one of two categories. The simplest, physically, is the absorptive filter; then there are interference or dichroic filters. Many optical filters are used for optical imaging and are manufactured to be transparent; some used for light sources can be translucent.

View the full Wikipedia page for Optical bandpass filter
↑ Return to Menu

Frequency response in the context of Vitaphone

Vitaphone was a sound film system used for feature films and nearly 1,000 short subjects made by Warner Bros. and its sister studio First National from 1926 to 1931. Vitaphone is the last major analog sound-on-disc system and the only one that was widely used and commercially successful. The soundtrack is not printed on the film, but issued separately on phonograph records. The discs, recorded at 33+13 rpm (a speed first used for this system) and typically 16 inches (41 cm) in diameter, are played on a turntable physically coupled to the projector motor while the film is projected. Its frequency response is 4300 Hz. Many early talkies, such as The Jazz Singer (1927), used the Vitaphone system. The name "Vitaphone" derived from the Latin and Greek words, respectively, for "living" and "sound".

The "Vitaphone" trademark was later associated with cartoons and other short subjects that had optical soundtracks and did not use discs.

View the full Wikipedia page for Vitaphone
↑ Return to Menu

Frequency response in the context of High fidelity

High fidelity (hi-fi or, rarely, HiFi) is the high-quality reproduction of sound. It is popular with audiophiles and home audio enthusiasts. Ideally, high-fidelity equipment has inaudible noise and distortion, and a flat (neutral, uncolored) frequency response within the human hearing range.

High fidelity contrasts with the lower-quality lo-fi sound produced by inexpensive audio equipment, AM radio, or the inferior quality of sound reproduction that can be heard in recordings made until the late 1940s.

View the full Wikipedia page for High fidelity
↑ Return to Menu

Frequency response in the context of Studio monitor

Studio monitors are loudspeakers in speaker enclosures specifically designed for professional audio production applications, such as recording studios, filmmaking, television studios, radio studios and project or home studios, where accurate audio reproduction is crucial. Among audio engineers, the term monitor implies that the speaker is designed to produce relatively flat (linear) phase and frequency responses. In other words, it exhibits minimal emphasis or de-emphasis of particular frequencies, the loudspeaker gives an accurate reproduction of the tonal qualities of the source audio ("uncolored" and "transparent" are synonyms), and there will be no relative phase shift of particular frequencies—meaning no distortion in sound-stage perspective for stereo recordings. Beyond stereo sound-stage requirements, a linear phase response helps impulse response remain true to source without encountering "smearing". An unqualified reference to a monitor often refers to a near-field (compact or close-field) design. This is a speaker small enough to sit on a stand or desk in proximity to the listener, so that most of the sound that the listener hears is coming directly from the speaker, rather than reflecting off walls and ceilings (and thus picking up coloration and reverberation from the room). Monitor speakers may include more than one type of driver (e.g., a tweeter and a woofer) or, for monitoring low-frequency sounds, such as bass drum, additional subwoofer cabinets may be used.

There are studio monitors designed for mid-field or far-field use as well. These are larger monitors with approximately 12 inch or larger woofers, suited to the bigger studio environment. They extend the width of the sweet spot, allowing "accurate stereo imaging for multiple persons". They tend to be used in film scoring environments, where simulation of larger sized areas like theaters is important.

View the full Wikipedia page for Studio monitor
↑ Return to Menu

Frequency response in the context of Low-pass filter

A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filter design. The filter is sometimes called a high-cut filter, or treble-cut filter in audio applications. A low-pass filter is the complement of a high-pass filter.

In optics, high-pass and low-pass may have different meanings, depending on whether referring to the frequency or wavelength of light, since these variables are inversely related. High-pass frequency filters would act as low-pass wavelength filters, and vice versa. For this reason, it is a good practice to refer to wavelength filters as short-pass and long-pass to avoid confusion, which would correspond to high-pass and low-pass frequencies.

View the full Wikipedia page for Low-pass filter
↑ Return to Menu

Frequency response in the context of Cutoff frequencies

In physics and electrical engineering, a cutoff frequency, corner frequency, or break frequency is a boundary in a system's frequency response at which energy flowing through the system begins to be reduced (attenuated or reflected) rather than passing through.

Typically in electronic systems such as filters and communication channels, cutoff frequency applies to an edge in a lowpass, highpass, bandpass, or band-stop characteristic – a frequency characterizing a boundary between a passband and a stopband. It is sometimes taken to be the point in the filter response where a transition band and passband meet, for example, as defined by a half-power point (a frequency for which the output of the circuit is approximately −3.01 dB of the nominal passband value). Alternatively, a stopband corner frequency may be specified as a point where a transition band and a stopband meet: a frequency for which the attenuation is larger than the required stopband attenuation, which for example may be 30 dB or 100 dB.

View the full Wikipedia page for Cutoff frequencies
↑ Return to Menu

Frequency response in the context of Megaphone

A megaphone, speaking trumpet, bullhorn, blowhorn, or loudhailer is usually a portable or hand-held, cone-shaped acoustic horn used to amplify a person's voice or other sounds and direct it in a given direction. The sound is introduced into the narrow end of the megaphone, by holding it up to the face and speaking into it, and the sound waves radiate out the wide end. A megaphone increases the volume of sound by increasing the acoustic impedance seen by the vocal cords, matching the impedance of the vocal cords to the air, so that more sound power is radiated. It also serves to direct the sound waves in the direction the horn is pointing. It somewhat distorts the sound of the voice because the frequency response of the megaphone is greater at higher sound frequencies.

Since the 1960s the voice-powered acoustic megaphone described above has been replaced by the electric megaphone, which uses a microphone, an electrically-powered amplifier and a folded horn loudspeaker to amplify the voice.

View the full Wikipedia page for Megaphone
↑ Return to Menu

Frequency response in the context of Sound box

A sound box or sounding box (sometimes written soundbox) is an open chamber in the body of a musical instrument which modifies the sound of the instrument, and helps transfer that sound to the surrounding air. Objects respond more strongly to vibrations at certain frequencies, known as resonances. The frequency and strength of the resonances of the body of a musical instrument have a significant impact on the tone quality it produces. The air inside the chamber has its own resonances, and these interact with the resonances of the body, altering the resonances of the instrument as a whole. The sound box typically adds resonances at lower frequencies, enhancing the lower-frequency response of the instrument.

The distinctive sound of an instrument with a sound box owes a lot to the alteration made to the tone. A sound box is found in most string instruments. The most notable exceptions are some electrically amplified instruments like the solid body electric guitar or the electric violin, and the piano which uses only a sound board instead. Drumhead lutes such as the banjo or erhu have at least one open end of the sound box covered with animal skin (or a skin-like acrylic material). Open back banjos are normally used for clawhammer and frailing, while those used for bluegrass have the back covered with a resonator.

View the full Wikipedia page for Sound box
↑ Return to Menu

Frequency response in the context of Comb filter

In signal processing, a comb filter is a filter implemented by adding a delayed version of a signal to itself, causing constructive and destructive interference. The frequency response of a comb filter consists of a series of regularly spaced notches in between regularly spaced peaks (sometimes called teeth) giving the appearance of a comb.

Comb filters exist in two forms, feedforward and feedback; which refer to the direction in which signals are delayed before they are added to the input.

View the full Wikipedia page for Comb filter
↑ Return to Menu

Frequency response in the context of Boxcar function

In mathematics, a boxcar function is any function which is zero over the entire real line except for a single interval where it is equal to a constant, A. The function is named after its graph's resemblance to a boxcar, a type of railroad car. The boxcar function can be expressed in terms of the uniform distribution aswhere f(a,b;x) is the uniform distribution of x for the interval [a, b] and is the Heaviside step function. As with most such discontinuous functions, there is a question of the value at the transition points, which are usually best chosen depending on the individual application.

When a boxcar function is selected as the impulse response of a filter, the result is a simple moving average filter, whose frequency response is a sinc-in-frequency, a type of low-pass filter.

View the full Wikipedia page for Boxcar function
↑ Return to Menu

Frequency response in the context of Voltage divider

In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.

Resistor voltage dividers are commonly used to create reference voltages, or to reduce the magnitude of a voltage so it can be measured, and may also be used as signal attenuators at low alternating current frequencies. For direct current and relatively low alternating current frequencies, a voltage divider may be sufficiently accurate if made only of resistors; where frequency response over a wide range is required (such as in an oscilloscope probe), a voltage divider may have capacitive elements added to compensate load capacitance. In electric power transmission, a capacitive voltage divider is used for measurement of high voltage.

View the full Wikipedia page for Voltage divider
↑ Return to Menu

Frequency response in the context of Linear filter

Linear filters process time-varying input signals to produce output signals, subject to the constraint of linearity. In most cases these linear filters are also time invariant (or shift invariant) in which case they can be analyzed exactly using LTI ("linear time-invariant") system theory revealing their transfer functions in the frequency domain and their impulse responses in the time domain. Real-time implementations of such linear signal processing filters in the time domain are inevitably causal, an additional constraint on their transfer functions. An analog electronic circuit consisting only of linear components (resistors, capacitors, inductors, and linear amplifiers) will necessarily fall in this category, as will comparable mechanical systems or digital signal processing systems containing only linear elements. Since linear time-invariant filters can be completely characterized by their response to sinusoids of different frequencies (their frequency response), they are sometimes known as frequency filters.

Non real-time implementations of linear time-invariant filters need not be causal. Filters of more than one dimension are also used such as in image processing. The general concept of linear filtering also extends into other fields and technologies such as statistics, data analysis, and mechanical engineering.

View the full Wikipedia page for Linear filter
↑ Return to Menu

Frequency response in the context of Smiley face curve

A smiley face curve or mid scoop in audio signal processing is a target frequency response curve characterized by boosted low and high frequencies coupled with reduced midrange frequency power. This curve is often attained by users employing a graphic equalizer, which shows a graphic representation of a "smile" using its frequency band faders to form a curve that sweeps upwards at each end of the frequency spectrum.Smiley face curves have been popular with some car audio enthusiasts, disc jockeys, electric bass players, home stereo owners and sound reinforcement operators. Though the graphic equalizer was intended to tailor a system's response to compensate for venue and performance conditions, the smiley face curve is sometimes applied as a purely stylistic effect.

View the full Wikipedia page for Smiley face curve
↑ Return to Menu