Frequency modulation in the context of "Radio station"

Play Trivia Questions online!

or

Skip to study material about Frequency modulation in the context of "Radio station"

Ad spacer

⭐ Core Definition: Frequency modulation

Frequency modulation (FM) is a signal modulation technique used in electronic communication, originally for transmitting messages with a radio wave. In frequency modulation a carrier wave is varied in its instantaneous frequency in proportion to a property, primarily the instantaneous amplitude, of a message signal, such as an audio signal. The technology is used in telecommunications, radio broadcasting, signal processing, and computing.

In analog frequency modulation, such as radio broadcasting of voice and music, the instantaneous frequency deviation, i.e. the difference between the frequency of the carrier and its center frequency, has a functional relation to the modulating signal amplitude.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Frequency modulation in the context of Radio broadcasting

Radio broadcasting is the transmission of electromagnetic radiation (radio waves) to receivers over a wide area. Most broadcasts are audio (sound), sometimes with embedded metadata. Listeners require a broadcast radio receiver to receive these signals. "Terrestrial" broadcasts, including AM, FM, and DAB stations, originate from land-based transmitters, whereas "satellite radio" signals originate from a satellite in Earth orbit.

Stations may produce their own programming or be affiliated with a radio network that provides content either through broadcast syndication or by simulcasting, or both. The most common transmission technologies are analog and digital. Analog radio uses one of two modulation methods: amplitude modulation (AM) or frequency modulation (FM). Digital radio stations transmit using one of several digital audio standards, such as DAB (Digital Audio Broadcasting), HD Radio, or DRM (Digital Radio Mondiale).

↑ Return to Menu

Frequency modulation in the context of VHF omnidirectional range

A very high frequency omnidirectional range station (VOR) is a type of short-range VHF radio navigation system for aircraft, enabling aircraft with a VOR receiver to determine the azimuth (also radial), referenced to magnetic north, between the aircraft to/from fixed VOR ground radio beacons. VOR and the first DME(1950) system (referenced to 1950 since different from today's DME/N) to provide the slant range distance, were developed in the United States as part of a U.S. civil/military program for Aeronautical Navigation Aids in 1945. Deployment of VOR and DME(1950) began in 1949 by the U.S. CAA (Civil Aeronautics Administration). ICAO standardized VOR and DME(1950) in 1950 in ICAO Annex, Edition 1. Frequencies for the use of VOR are standardized in the very high frequency (VHF) band between 108.00 and 117.95 MHz. To improve azimuth accuracy of VOR even under difficult siting conditions, Doppler VOR (DVOR) was developed in the 1960s. VOR is according to ICAO rules a primary means navigation system for commercial and general aviation, (D)VOR are gradually decommissioned and replaced by DME-DME RNAV (area navigation) 7.2.3 and satellite based navigation systems such as GPS in the early 21st century. In 2000 there were about 3,000 VOR stations operating around the world, including 1,033 in the US, but by 2013 the number in the US had been reduced to 967. The United States is decommissioning approximately half of its VOR stations and other legacy navigation aids as part of a move to performance-based navigation, while still retaining a "Minimum Operational Network" of VOR stations as a backup to GPS. In 2015, the UK planned to reduce the number of stations from 44 to 19 by 2020.

A VOR beacon radiates via two or more antennas an amplitude modulated signal and a frequency modulated subcarrier. By comparing the fixed 30 Hz reference signal with the rotating azimuth 30 Hz signal the azimuth from an aircraft to a (D)VOR is detected. The phase difference is indicative of the bearing from the (D)VOR station to the receiver relative to magnetic north. This line of position is called the VOR "radial". While providing the same signal over the air at the VOR receiver antennas. DVOR is based on the Doppler shift to modulate the azimuth dependent 30 Hz signal in space, by continuously switching the signal of about 25 antenna pairs that form a circle around the center 30 Hz reference antenna.

↑ Return to Menu

Frequency modulation in the context of Citizens band

Citizens band radio (CB radio) is a land mobile radio system, a system allowing short-distance one-to-many bidirectional voice communication among individuals, using two-way radios operating near 27 MHz (or the 11-m wavelength) in the high frequency or shortwave band. Citizens band is distinct from other personal radio service allocations such as FRS, GMRS, MURS, UHF CB and the Amateur Radio Service ("ham" radio). In many countries, CB operation does not require a license and may be used for business or personal communications.

Like many other land mobile radio services, multiple radios in a local area share a single frequency channel, but only one can transmit at a time. The radio is normally in receive mode to receive transmissions of other radios on the channel; when users want to communicate they press a "push to talk" button on their radio, which turns on their transmitter. Users on a channel must take turns transmitting. In the US and Canada, and in the EU and the UK, transmitter power is limited to 4 watts when using AM and FM and 12 W PEP when using SSB. Illegal amplifiers to increase range are common.

↑ Return to Menu

Frequency modulation in the context of Single-frequency network

A single-frequency network or SFN is a broadcast network where several transmitters simultaneously send the same signal over the same frequency channel.

Analog AM and FM radio broadcast networks as well as digital broadcast networks can operate in this manner. SFNs are not generally compatible with analog television transmission, since the SFN results in ghosting due to echoes of the same signal.

↑ Return to Menu

Frequency modulation in the context of Edwin Armstrong

Edwin Howard Armstrong (December 18, 1890 – February 1, 1954) was an American radio-frequency engineer and inventor who developed FM (frequency modulation) radio and the superheterodyne receiver system.

He held 42 patents and received numerous awards, including the first Medal of Honor awarded by the Institute of Radio Engineers (now IEEE), the French Legion of Honor, the 1941 Franklin Medal and the 1942 Edison Medal. He achieved the rank of major in the U.S. Army Signal Corps during World War I and was often referred to as "Major Armstrong" during his career. He was inducted into the National Inventors Hall of Fame and included in the International Telecommunication Union's roster of great inventors. He was inducted into the Wireless Hall of Fame posthumously in 2001. Armstrong attended Columbia University, and served as a professor there for most of his life.

↑ Return to Menu

Frequency modulation in the context of Television channel

A television channel, or TV channel, is a terrestrial frequency or allocated number over which a television station or television network is distributed. For example, in North America, channel 2 refers to the terrestrial or cable band of 54 to 60 MHz, with carrier frequencies of 55.25 MHz for NTSC analog video (VSB) and 59.75 MHz for analog audio (FM), or 55.31 MHz for digital ATSC (8VSB). Channels may be shared by many different television stations or cable-distributed channels depending on the location and service provider.

Depending on the multinational bandplan for a given region, analog television channels are typically 6, 7, or 8 MHz in bandwidth, and therefore television channel frequencies vary as well. Channel numbering is also different. Digital terrestrial television channels are the same as their analog predecessors for legacy reasons, however through multiplexing, each physical radio frequency (RF) channel can carry several digital subchannels. On satellites, each transponder normally carries one channel, however multiple small, independent channels can be on one transponder, with some loss of bandwidth due to the need for guard bands between unrelated transmissions. ISDB, used in Japan and Brazil, has a similar segmented mode.

↑ Return to Menu

Frequency modulation in the context of Amplitude modulation

Amplitude modulation (AM) is a signal modulation technique used in electronic communication, most commonly for transmitting messages with a radio wave. In amplitude modulation, the instantaneous amplitude of the wave is varied in proportion to that of the message signal, such as an audio signal. This technique contrasts with angle modulation, in which either the frequency of the carrier wave is varied, as in frequency modulation, or its phase, as in phase modulation.

AM was the earliest modulation method used for transmitting audio in radio broadcasting. It was developed during the first quarter of the 20th century beginning with Roberto Landell de Moura and Reginald Fessenden's radiotelephone experiments in 1900. This original form of AM is sometimes called double-sideband amplitude modulation (DSBAM), because the standard method produces sidebands on either side of the carrier frequency. Single-sideband modulation uses bandpass filters to eliminate one of the sidebands and possibly the carrier signal, which improves the ratio of message power to total transmission power, reduces power handling requirements of line repeaters, and permits better bandwidth utilization of the transmission medium.

↑ Return to Menu

Frequency modulation in the context of FM radio

FM broadcasting is a method of radio broadcasting that uses frequency modulation (FM) of the radio broadcast carrier wave. Invented in 1933 by American engineer Edwin Armstrong, wide-band FM is used worldwide to transmit high-fidelity sound over broadcast radio. FM broadcasting offers higher fidelity—more accurate reproduction of the original program sound—than other broadcasting techniques, such as AM broadcasting. It is also less susceptible to common forms of interference, having less static and popping sounds than are often heard on AM, but with a more limited broadcast distance. Therefore, FM is used for most broadcasts of music and general audio (in the audio spectrum). FM radio stations use the very high frequency range of radio frequencies.

↑ Return to Menu