Frequency division multiplexing in the context of Carrier frequency


Frequency division multiplexing in the context of Carrier frequency

Frequency division multiplexing Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Frequency division multiplexing in the context of "Carrier frequency"


⭐ Core Definition: Frequency division multiplexing

In telecommunications, frequency-division multiplexing (FDM) is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency bands, each of which is used to carry a separate signal. This allows a single transmission medium such as a microwave radio link, cable or optical fiber to be shared by multiple independent signals. Another use is to carry separate serial bits or segments of a higher rate signal in parallel.

The most common example of frequency-division multiplexing is radio and television broadcasting, in which multiple radio signals at different frequencies pass through the air at the same time. Another example is cable television, in which many television channels are carried simultaneously on a single cable. FDM is also used by telephone systems to transmit multiple telephone calls through high capacity trunklines, communications satellites to transmit multiple channels of data on uplink and downlink radio beams, and broadband DSL modems to transmit large amounts of computer data through twisted pair telephone lines, among many other uses.

↓ Menu
HINT:

In this Dossier

Frequency division multiplexing in the context of Carrier wavelength

In telecommunications, a carrier wave, carrier signal, or just carrier, is a periodic waveform (usually sinusoidal) that conveys information through a process called modulation. One or more of the wave's properties, such as amplitude or frequency, are modified by an information bearing signal, called the message signal or modulation signal. The carrier frequency is usually much higher than the message signal frequency because it is usually impractical to transmit signals with low frequencies due to larger wavelength than antenna size.

The purpose of the carrier is usually either to transmit the information through space as an electromagnetic wave (as in radio communication), or to allow several carriers at different frequencies to share a common physical transmission medium by frequency division multiplexing (as in a cable television system).

View the full Wikipedia page for Carrier wavelength
↑ Return to Menu