Frequency band in the context of "Light-curve"

Play Trivia Questions online!

or

Skip to study material about Frequency band in the context of "Light-curve"

Ad spacer

⭐ Core Definition: Frequency band

Spectral bands are regions of a given spectrum, having a specific range of wavelengths or frequencies. Most often, it refers to electromagnetic bands, regions of the electromagnetic spectrum. More generally, spectral bands may also be means in the spectra of other types of signals, e.g., noise spectrum.

A frequency band is an interval in the frequency domain, limited by a lower frequency and an upper frequency. For example, it may refer to a radio band, such as wireless communication standards set by the International Telecommunication Union.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Frequency band in the context of Light curve

In astronomy, a light curve is a graph of the light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y-axis and with time on the x-axis. The light is usually in a particular frequency interval or band.

Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets; or aperiodic, like the light curve of a nova, cataclysmic variable star, supernova, microlensing event, or binary as observed during occultation events. The study of a light curve and other observations can yield considerable information about the physical process that produces such a light curve, or constrain the physical theories about it.

↑ Return to Menu

Frequency band in the context of 2MASS

The Two Micron All-Sky Survey (2MASS) was an astronomical survey of the whole sky in infrared light. It took place between 1997 and 2001, in two different locations: at the U.S. Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona, and at the Cerro Tololo Inter-American Observatory in Chile, each using a 1.3-meter telescope for the Northern and Southern Hemisphere, respectively. It was conducted in the short-wavelength infrared at three distinct frequency bands (J, H, and K) near 2 micrometres, from which the photometric survey with its HgCdTe detectors derives its name.

2MASS produced an astronomical catalog with over 300 million observed objects, including minor planets of the Solar System, brown dwarfs, low-mass stars, nebulae, star clusters and galaxies. In addition, 1 million objects were cataloged in the 2MASS Extended Source Catalog (2MASX). The cataloged objects are designated with a "2MASS" and "2MASX" prefix, respectively.

↑ Return to Menu

Frequency band in the context of Bandwidth (signal processing)

Bandwidth is the difference between the upper and lower frequencies in a continuous band of frequencies. It is typically measured in unit of hertz (symbol Hz).

It may refer more specifically to two subcategories: Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, a band-pass filter, a communication channel, or a signal spectrum. Baseband bandwidth is equal to the upper cutoff frequency of a low-pass filter or baseband signal, which includes a zero frequency.

↑ Return to Menu

Frequency band in the context of Extremely high frequency

Extremely high frequency (EHF) is the International Telecommunication Union (ITU) designation for the band in the electromagnetic spectrum from 30 to 300 gigahertz (GHz). It is in the microwave part of the radio spectrum, between the super high frequency band and the terahertz band. Radio waves in this band have wavelengths from ten to one millimeter, so it is also called the millimeter band and radiation in this band is called millimeter waves, sometimes abbreviated MMW or mmWave. Some define mmWaves as starting at 24 GHz, thus covering the entire FR2 band (24.25 to 71 GHz), among others.

Compared to lower bands, radio waves in this band have high atmospheric attenuation: they are absorbed by the gases in the atmosphere. Absorption increases with frequency until at the top end of the band the waves are attenuated to zero within a few meters. Absorption by humidity in the atmosphere is significant except in desert environments, and attenuation by rain (rain fade) is a serious problem even over short distances. However the short propagation range allows smaller frequency reuse distances than lower frequencies. The short wavelength allows modest size antennas to have a small beam width, further increasing frequency reuse potential. Millimeter waves are used for military fire-control radar, airport security scanners, short range wireless networks, and scientific research.

↑ Return to Menu

Frequency band in the context of Digital broadcasting

Digital broadcasting is the practice of using digital signals rather than analogue signals for broadcasting over radio frequency bands (radio broadcasting). Digital television broadcasting (especially satellite television) is widespread. Digital audio broadcasting is being adopted more slowly for radio broadcasting where it is mainly used in Satellite radio.

Digital links, thanks to the use of data compression, generally have greater spectral efficiency than analog links. Content providers can provide more services or a higher-quality signal than was previously available.

↑ Return to Menu

Frequency band in the context of Audio crossover

Audio crossovers are a type of electronic filter circuitry that splits an audio signal into two or more frequency ranges, so that the signals can be sent to loudspeaker drivers that are designed to operate within different frequency ranges. The crossover filters can be either active or passive. They are often described as two-way or three-way, which indicate, respectively, that the crossover splits a given signal into two frequency ranges or three frequency ranges. Crossovers are used in loudspeaker cabinets, power amplifiers in consumer electronics (hi-fi, home cinema sound and car audio) and pro audio and musical instrument amplifier products. For the latter two markets, crossovers are used in bass amplifiers, keyboard amplifiers, bass and keyboard speaker enclosures and sound reinforcement system equipment (PA speakers, monitor speakers, subwoofer systems, etc.).

Crossovers are used because most individual loudspeaker drivers are incapable of covering the entire audio spectrum from low frequencies to high frequencies with acceptable relative volume and absence of distortion. Most hi-fi speaker systems and sound reinforcement system speaker cabinets use a combination of multiple loudspeaker drivers, each catering to a different frequency band. A standard simple example is in hi-fi and PA system cabinets that contain a woofer for low and mid frequencies and a tweeter for high frequencies. Since a sound signal source, be it recorded music from a CD player or a live band's mix from an audio console, has all of the low, mid and high frequencies combined, a crossover circuit is used to split the audio signal into separate frequency bands that can be separately routed to loudspeakers, tweeters or horns optimized for those frequency bands.

↑ Return to Menu

Frequency band in the context of Spread spectrum

In telecommunications, especially radio communication, spread spectrum are techniques by which a signal (e.g., an electrical, electromagnetic, or acoustic) generated with a particular bandwidth is deliberately spread in the frequency domain over a wider frequency band. Spread-spectrum techniques are used for the establishment of secure communications, increasing resistance to natural interference, noise, and jamming, to prevent detection, to limit power flux density (e.g., in satellite downlinks), and to enable multiple-access communications.

↑ Return to Menu