Ecology in the context of "Biomass"

⭐ In the context of biomass, ecology distinguishes itself from bioenergy primarily by considering biomass as…

Ad spacer

⭐ Core Definition: Ecology

Ecology (from Ancient Greek οἶκος (oîkos)  'house' and -λογία (-logía)  'study of') is the natural science of the relationships among living organisms and their environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere levels. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history.

Ecology is a branch of biology, and is the study of abundance, biomass, and distribution of organisms in the context of the environment. It encompasses life processes, interactions, and adaptations; movement of materials and energy through living communities; successional development of ecosystems; cooperation, competition, and predation within and between species; and patterns of biodiversity and its effect on ecosystem processes.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Ecology in the context of Biology

Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, origin, evolution, and distribution of life. Central to biology are five fundamental themes: the cell as the basic unit of life, genes and heredity as the basis of inheritance, evolution as the driver of biological diversity, energy transformation for sustaining life processes, and the maintenance of internal stability (homeostasis).

Biology examines life across multiple levels of organization, from molecules and cells to organisms, populations, and ecosystems. Subdisciplines include molecular biology, physiology, ecology, evolutionary biology, developmental biology, and systematics, among others. Each of these fields applies a range of methods to investigate biological phenomena, including observation, experimentation, and mathematical modeling. Modern biology is grounded in the theory of evolution by natural selection, first articulated by Charles Darwin, and in the molecular understanding of genes encoded in DNA. The discovery of the structure of DNA and advances in molecular genetics have transformed many areas of biology, leading to applications in medicine, agriculture, biotechnology, and environmental science.

↑ Return to Menu

Ecology in the context of Alfred North Whitehead

Alfred North Whitehead OM FRS FBA (15 February 1861 – 30 December 1947) was an English mathematician and philosopher. He created the philosophical school known as process philosophy, which has been applied in a wide variety of disciplines, including ecology, theology, education, physics, biology, economics, and psychology.

In his early career Whitehead wrote primarily on mathematics, logic, and physics. He wrote the three-volume Principia Mathematica (1910–1913), with his former student Bertrand Russell. Principia Mathematica is considered one of the twentieth century's most important works in mathematical logic, and placed 23rd in a list of the top 100 English-language nonfiction books of the twentieth century by Modern Library.

↑ Return to Menu

Ecology in the context of Sustainable city

A sustainable city, eco-city, or green city is a city designed with consideration for the social, economic, and environmental impact (commonly referred to as the triple bottom line), as well as a resilient habitat for existing populations. The UN Sustainable Development Goal 11 defines as one that is dedicated to achieving green, social, and economic sustainability, facilitating opportunities that prioritize inclusivity as well as maintaining a sustainable economic growth. Furthermore, the objective is to minimize the inputs of energy, water, and food, and to drastically reduce waste, as well as the outputs of heat, air pollution (including CO2, methane, and water pollution).

The UN Environment Programme calls out that most cities today are struggling with environmental degradation, traffic congestion, inadequate urban infrastructure, in addition to a lack of basic services, such as water supply, sanitation, and waste management. A sustainable city should promote economic growth and meet the basic needs of its inhabitants, while creating sustainable living conditions for all. Ideally, a sustainable city is one that creates an enduring way of life across the four domains of ecology, economics, politics, and culture. The European Investment Bank is assisting cities in the development of long-term strategies in fields including renewable transportation, energy efficiency, sustainable housing, education, and health care. The European Investment Bank has spent more than €150 billion in bettering cities over the last eight years.

↑ Return to Menu

Ecology in the context of Biogeography

Biogeography is the study of the distribution of species and ecosystems in geographic space and through geological time. Organisms and biological communities often vary in a regular fashion along geographic gradients of latitude, elevation, isolation and habitat area. Phytogeography is the branch of biogeography that studies the distribution of plants, Zoogeography is the branch that studies distribution of animals, while Mycogeography is the branch that studies distribution of fungi, such as mushrooms.

Knowledge of spatial variation in the numbers and types of organisms is as vital to us today as it was to our early human ancestors, as we adapt to heterogeneous but geographically predictable environments. Biogeography is an integrative field of inquiry that unites concepts and information from ecology, evolutionary biology, taxonomy, geology, physical geography, palaeontology, and climatology.

↑ Return to Menu

Ecology in the context of Australasia

Australasia is a subregion of Oceania, comprising Australia, New Zealand (overlapping with Polynesia), and sometimes New Guinea and surrounding islands (overlapping with Melanesia). The term is used in a number of different contexts, including geopolitically, physiogeographically, philologically, and ecologically, where the term covers several slightly different but related regions.

↑ Return to Menu

Ecology in the context of Abiotic component

In biology and ecology, abiotic components or abiotic factors are non-living chemical and physical parts of the environment that affect living organisms and the functioning of ecosystems. Abiotic factors and the phenomena associated with them underpin biology as a whole. They affect a plethora of species, in all forms of environmental conditions, such as marine or terrestrial animals. Humans can make or change abiotic factors in a species' environment. For instance, fertilizers can affect a snail's habitat, or the greenhouse gases which humans utilize can change marine pH levels.

Abiotic components include physical conditions and non-living resources that affect living organisms in terms of growth, maintenance, and reproduction. Resources are distinguished as substances or objects in the environment required by one organism and consumed or otherwise made unavailable for use by other organisms. Component degradation of a substance occurs by chemical or physical processes, e.g. hydrolysis. All non-living components of an ecosystem, such as atmospheric conditions and water resources, are called abiotic components.

↑ Return to Menu

Ecology in the context of Ecological unit

Ecological units refer to specific levels or degrees of organization within ecological systems. The units that are most commonly used and discussed within ecological systems are those at the levels of individuals, populations, communities, and ecosystems. These terms help distinguish between very specific, localized interactions, such as those occurring at the individual or population level, and broader, more complex interactions that occur at the community and ecosystem levels, providing a framework for understanding ecological structure and processes at different scales.

These ecological units are foundational to the field of ecology as they define and identify the key components and relationships within ecological systems at the different levels—providing cohesion in conversation and research. Additionally, these terms and the concept of ecological units as a whole are intertwined in ecological theory, understanding biodiversity, conservation strategies, and more. However, these ecological units have been met with some disagreements over the inconsistencies in the exact terminology and its uses. Arguments over stem from conflicting views from four different areas:

↑ Return to Menu

Ecology in the context of Chemistry

Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. Chemistry also addresses the nature of chemical bonds in chemical compounds.

In the scope of its subject, chemistry occupies an intermediate position between physics and biology. It is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. For example, chemistry explains aspects of plant growth (botany), the formation of igneous rocks (geology), how atmospheric ozone is formed and how environmental pollutants are degraded (ecology), the properties of the soil on the Moon (cosmochemistry), how medications work (pharmacology), and how to collect DNA evidence at a crime scene (forensics).

↑ Return to Menu

Ecology in the context of Environmentalism

Environmentalism is a broad philosophy, ideology, and social movement about supporting life, habitats, and surroundings. While environmentalism focuses on the environmental and nature-related aspects of green ideology and politics, ecologism combines the ideology of social ecology and environmentalism. Ecologism is a term more commonly used in continental European languages, while environmentalism is more commonly used in English, but the words have slightly different connotations.

Environmentalism advocates the preservation, restoration and improvement of the natural environment and critical earth system elements or processes such as the climate, and may be referred to as a movement to control pollution or protect plant and animal diversity. For this reason, concepts such as a land ethics, environmental ethics, biodiversity, ecology, and the biophilia hypothesis figure predominantly. The environmentalist movement encompasses various approaches to addressing environmental issues, including free market environmentalism, evangelical environmentalism, and the environmental conservation movement.

↑ Return to Menu