Fractionating column in the context of Volatility (chemistry)


Fractionating column in the context of Volatility (chemistry)

Fractionating column Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Fractionating column in the context of "Volatility (chemistry)"


⭐ Core Definition: Fractionating column

A fractionating column or fractional column is equipment used in the distillation of liquid mixtures to separate the mixture into its component parts, or fractions, based on their differences in volatility. Fractionating columns are used in small-scale laboratory distillations as well as large-scale industrial distillations.

↓ Menu
HINT:

In this Dossier

Fractionating column in the context of Chemical engineering

Chemical engineering is an engineering field which deals with the study of the operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials into useful products. Chemical engineering uses principles of chemistry, physics, mathematics, biology, and economics to efficiently use, produce, design, transport and transform energy and materials. The work of chemical engineers can range from the utilization of nanotechnology and nanomaterials in the laboratory to large-scale industrial processes that convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products. Chemical engineers are involved in many aspects of plant design and operation, including safety and hazard assessments, process design and analysis, modeling, control engineering, chemical reaction engineering, nuclear engineering, biological engineering, construction specification, and operating instructions.

Chemical engineers typically hold a degree in Chemical Engineering or Process Engineering. Practicing engineers may have professional certification and be accredited members of a professional body. Such bodies include the Institution of Chemical Engineers (IChemE) or the American Institute of Chemical Engineers (AIChE) and respective states in the U.S., which ultimately confer licensure and title of Professional Engineer. A degree in chemical engineering is directly linked with all of the other engineering disciplines, to various extents.

View the full Wikipedia page for Chemical engineering
↑ Return to Menu

Fractionating column in the context of Round-bottom flask

Round-bottom flasks (also called round-bottomed flasks or RB flasks) are types of flasks having spherical bottoms used as laboratory glassware, mostly for chemical or biochemical work. They are typically made of glass for chemical inertness; and in modern days, they are usually made of heat-resistant borosilicate glass. There is at least one tubular section known as the neck with an opening at the tip. Two- or three-necked flasks are common as well. Round bottom flasks come in many sizes, from 5 mL to 20 L, with the sizes usually inscribed on the glass. In pilot plants even larger flasks are encountered.

The ends of the necks are usually conical ground glass joints. These are standardized, and can accept any similarly-sized tapered (male) fittings. 24/40 is common for 250 mL or larger flasks, while smaller sizes such as 14/20 or 19/22 are used for smaller flasks.

View the full Wikipedia page for Round-bottom flask
↑ Return to Menu

Fractionating column in the context of AzarAb Industries

AzarAb Industries is an Iranian manufacturing corporation that constructs power plants, factories, petrochemical plants and sugar, oil and gas refineries that is located in Arak. As of 2005, AzarAb Industries, employed more than 2,500 people.

Their main products are air preheaters, boilers, butterfly valves, water turbines, reactors, fractionating columns and pressure vessels.

View the full Wikipedia page for AzarAb Industries
↑ Return to Menu

Fractionating column in the context of Fractionation

Fractionation is a separation process in which a certain quantity of a mixture (of gasses, solids, liquids, enzymes, or isotopes, or a suspension) is divided during a phase transition, into a number of smaller quantities (fractions) in which the composition varies according to a gradient. Fractions are collected based on differences in a specific property of the individual components. A common trait in fractionations is the need to find an optimum between the amount of fractions collected and the desired purity in each fraction. Fractionation makes it possible to isolate more than two components in a mixture in a single run. This property sets it apart from other separation techniques.

Fractionation is widely employed in many branches of science and technology. Mixtures of liquids and gasses are separated by fractional distillation by difference in boiling point. Fractionation of components also takes place in column chromatography by a difference in affinity between stationary phase and the mobile phase. In fractional crystallization and fractional freezing, chemical substances are fractionated based on difference in solubility at a given temperature. In cell fractionation, cell components are separated by difference in mass.

View the full Wikipedia page for Fractionation
↑ Return to Menu