Work (thermodynamics)

⭐ In the context of Work_(thermodynamics), what characterizes the relationship between the energy exchanged and the system's internal state?




⭐ Core Definition: Work (thermodynamics)

Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, or cause changes in electromagnetic, or gravitational variables. Also, the surroundings can perform thermodynamic work on a thermodynamic system, which is measured by an opposite sign convention.

For thermodynamic work, appropriately chosen externally measured quantities are exactly matched by values of or contributions to changes in macroscopic internal state variables of the system, which always occur in conjugate pairs, for example pressure and volume or magnetic flux density and magnetization.

↓ Menu

In this Dossier

Work (thermodynamics) in the context of Energy

Energy (from Ancient Greek ἐνέργεια (enĆ©rgeia)Ā 'activity') is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light. Energy is a conserved quantity—the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The unit of measurement for energy in the International System of Units (SI) is the joule (J).

Forms of energy include the kinetic energy of a moving object, the potential energy stored by an object (for instance due to its position in a field), the elastic energy stored in a solid object, chemical energy associated with chemical reactions, the radiant energy carried by electromagnetic radiation, the internal energy contained within a thermodynamic system, and rest energy associated with an object's rest mass. These are not mutually exclusive.

↑ Return to Menu

Work (thermodynamics) in the context of Waste heat

Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility (or in thermodynamics lexicon a lower exergy or higher entropy) than the original energy source. Sources of waste heat include all manner of human activities, natural systems, and all organisms, for example, incandescent light bulbs get hot, a refrigerator warms the room air, a building gets hot during peak hours, an internal combustion engine generates high-temperature exhaust gases, and electronic components get warm when in operation.

Instead of being "wasted" by release into the ambient environment, sometimes waste heat (or cold) can be used by another process (such as using hot engine coolant to heat a vehicle), or a portion of heat that would otherwise be wasted can be reused in the same process if make-up heat is added to the system (as with heat recovery ventilation in a building).

↑ Return to Menu

Work (thermodynamics) in the context of Future of an expanding universe

Current observations suggest that the expansion of the universe will continue forever. The prevailing theory is that the universe will cool as it expands, eventually becoming too cold to sustain life. For this reason, this future scenario popularly called "Heat Death" is also known as the "Big Chill" or "Big Freeze". Some of the other popular theories include the Big Rip, Big Crunch, and the Big Bounce.

If dark energy—represented by the cosmological constant, a constant energy density filling space homogeneously, or scalar fields, such as quintessence or moduli, dynamic quantities whose energy density can vary in time and space—accelerates the expansion of the universe, then the space between clusters of galaxies will grow at an increasing rate. Redshift will stretch ancient ambient photons (including gamma rays) to undetectably long wavelengths and low energies. Stars are expected to form normally for 10 to 10 (1–100Ā trillion) years, but eventually the supply of gas needed for star formation will be exhausted. As existing stars run out of fuel and cease to shine, the universe will slowly and inexorably grow darker. According to theories that predict proton decay, the stellar remnants left behind will disappear, leaving behind only black holes, which themselves eventually disappear as they emit Hawking radiation. Ultimately, if the universe reaches thermodynamic equilibrium, a state in which the temperature approaches a uniform value, no further work will be possible, resulting in a final heat death of the universe.

↑ Return to Menu

Work (thermodynamics) in the context of Internal energy

The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization. It excludes the kinetic energy of motion of the system as a whole and the potential energy of position of the system as a whole, with respect to its surroundings and external force fields. It includes the thermal energy, i.e., the constituent particles' kinetic energies of motion relative to the motion of the system as a whole. Without a thermodynamic process, the internal energy of an isolated system cannot change, as expressed in the law of conservation of energy, a foundation of the first law of thermodynamics. The notion has been introduced to describe the systems characterized by temperature variations, temperature being added to the set of state parameters, the position variables known in mechanics (and their conjugated generalized force parameters), in a similar way to potential energy of the conservative fields of force, gravitational and electrostatic. Its author is Rudolf Clausius. Without transfer of matter, internal energy changes equal the algebraic sum of the heat transferred and the work done. In systems without temperature changes, internal energy changes equal the work done by/on the system.

The internal energy cannot be measured absolutely. Thermodynamics concerns changes in the internal energy, not its absolute value. The processes that change the internal energy are transfers, into or out of the system, of substance, or of energy, as heat, or by thermodynamic work. These processes are measured by changes in the system's properties, such as temperature, entropy, volume, electric polarization, and molar constitution. The internal energy depends only on the internal state of the system and not on the particular choice from many possible processes by which energy may pass into or out of the system. It is a state variable, a thermodynamic potential, and an extensive property.

↑ Return to Menu

Work (thermodynamics) in the context of Thermal energy

The term "thermal energy" is often used ambiguously in physics and engineering. It can denote several different physical concepts, including:

Mark Zemansky (1970) has argued that the term "thermal energy" is best avoided due to its ambiguity. He suggests using more precise terms such as "internal energy" and "heat" to avoid confusion. The term is, however, used in some textbooks.

↑ Return to Menu

Work (thermodynamics) in the context of Laws of thermodynamics

The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various parameters for thermodynamic processes, such as thermodynamic work and heat, and establish relationships between them. They state empirical facts that form a basis of precluding the possibility of certain phenomena, such as perpetual motion. In addition to their use in thermodynamics, they are important fundamental laws of physics in general and are applicable in other natural sciences.

Traditionally, thermodynamics has recognized three fundamental laws, simply named by an ordinal identification, the first law, the second law, and the third law. A more fundamental statement was later labelled as the zeroth law after the first three laws had been established.

↑ Return to Menu

Work (thermodynamics) in the context of Exergy

Exergy, often referred to as "available energy" or "useful work potential", is a fundamental concept in the field of thermodynamics and engineering. It plays a crucial role in understanding and quantifying the quality of energy within a system and its potential to perform useful work. Exergy analysis has widespread applications in various fields, including energy engineering, environmental science, and industrial processes.

From a scientific and engineering perspective, second-law-based exergy analysis is valuable because it provides a number of benefits over energy analysis alone. These benefits include the basis for determining energy quality (or exergy content), enhancing the understanding of fundamental physical phenomena, and improving design, performance evaluation and optimization efforts. In thermodynamics, the exergy of a system is the maximum useful work that can be produced as the system is brought into equilibrium with its environment by an ideal process. The specification of an "ideal process" allows the determination of "maximum work" production. From a conceptual perspective, exergy is the "ideal" potential of a system to do work or cause a change as it achieves equilibrium with its environment. Exergy is also known as "availability". Exergy is non-zero when there is dis-equilibrium between the system and its environment, and exergy is zero when equilibrium is established (the state of maximum entropy for the system plus its environment).

↑ Return to Menu

Work (thermodynamics) in the context of Thermodynamic

Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics, which convey a quantitative description using measurable macroscopic physical quantities but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to various topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering, and mechanical engineering, as well as other complex fields such as meteorology.

Historically, thermodynamics developed out of a desire to increase the efficiency of early steam engines, particularly through the work of French physicist Sadi Carnot (1824) who believed that engine efficiency was the key that could help France win the Napoleonic Wars. Scots-Irish physicist Lord Kelvin was the first to formulate a concise definition of thermodynamics in 1854 which stated, "Thermo-dynamics is the subject of the relation of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical agency." German physicist and mathematician Rudolf Clausius restated Carnot's principle known as the Carnot cycle and gave the theory of heat a truer and sounder basis. His most important paper, "On the Moving Force of Heat", published in 1850, first stated the second law of thermodynamics. In 1865 he introduced the concept of entropy. In 1870 he introduced the virial theorem, which applied to heat.

↑ Return to Menu