Forward scatter in the context of Cassini–Huygens


Forward scatter in the context of Cassini–Huygens

Forward scatter Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Forward scatter in the context of "Cassini–Huygens"


⭐ Core Definition: Forward scatter

Forward scattering is the deflection of waves by small angles so that they continue to move in close to the same direction as before the scattering. It can occur with all types of waves, for instance light, ultraviolet radiation, X-rays as well as matter waves such as electrons, neutrons and even water waves. It can be due to diffraction, refraction, and low angle reflection. It almost always occurs when the wavelength of the radiation used is small relative to the features which lead to the scattering. Forward scatter is essentially the reverse of backscatter.

Many different examples exist, and there are very large fields where forward scattering dominates, in particular for electron diffraction and electron microscopy, X-ray diffraction and neutron diffraction. In these the relevant waves are transmitted through the samples. One case where there is forward scattering in a reflection geometry is reflection high-energy electron diffraction.

↓ Menu
HINT:

In this Dossier

Forward scatter in the context of Backscatter

In physics, backscatter (or backscattering) is the reflection of waves, particles, or signals back to the direction from which they came. It is usually a diffuse reflection due to scattering, as opposed to specular reflection as from a mirror, although specular backscattering can occur at normal incidence with a surface. Backscattering has important applications in astronomy, photography, and medical ultrasonography. The opposite effect is forward scatter, e.g. when a translucent material like a cloud diffuses sunlight, giving soft light.

View the full Wikipedia page for Backscatter
↑ Return to Menu

Forward scatter in the context of Lens flares

A lens flare happens when light is scattered, or flared, in a lens system, often in response to a bright light, producing a sometimes undesirable artifact in the image. This happens through light scattered by the imaging mechanism itself, for example through internal reflection and forward scatter from material imperfections in the lens. Lenses with large numbers of elements such as zooms tend to have more lens flare, as they contain a relatively large number of interfaces at which internal scattering may occur. These mechanisms differ from the focused image generation mechanism, which depends on rays from the refraction of light from the subject itself.

There are two types of flare: visible artifacts and glare across the image. The glare makes the image look "washed out" by reducing contrast and color saturation (adding light to dark image regions, and adding white to saturated regions, reducing their saturation). Visible artifacts, usually in the shape of the aperture made by the iris diaphragm, are formed when light follows a pathway through the lens that contains one or more reflections from the lens surfaces.

View the full Wikipedia page for Lens flares
↑ Return to Menu

Forward scatter in the context of Anticrepuscular rays

Anticrepuscular rays, or antisolar rays, are meteorological optical phenomena similar to crepuscular rays, but appear opposite the Sun in the sky. Anticrepuscular rays are essentially parallel, but appear to converge toward the antisolar point, the vanishing point, due to a visual illusion from linear perspective.

Anticrepuscular rays are most frequently visible around dawn or dusk. This is because the atmospheric light scattering that makes them visible (backscattering) is larger for low angles to the horizon than most other angles. Anticrepuscular rays are dimmer than crepuscular rays because backscattering is less than forward scattering.

View the full Wikipedia page for Anticrepuscular rays
↑ Return to Menu