Folding (chemistry) in the context of "Supramolecular chemistry"

Play Trivia Questions online!

or

Skip to study material about Folding (chemistry) in the context of "Supramolecular chemistry"

Ad spacer

⭐ Core Definition: Folding (chemistry)

In chemistry, folding is the process by which a molecule assumes its shape or conformation. The process can also be described as intramolecular self-assembly, a type of molecular self-assembly, where the molecule is directed to form a specific shape through noncovalent interactions, such as hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-pi interactions, and electrostatic effects.

The most active area of interest in the folding of molecules is the process of protein folding, which analyses the specific sequences of amino acids in a protein. The shape of the folded protein can be used to understand its function and design drugs to influence the processes that it is involved in.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Folding (chemistry) in the context of Supramolecular

Supramolecular chemistry is the branch of chemistry concerning chemical systems composed of discrete numbers of molecules. The strength of the forces responsible for spatial organization of the system ranges from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component. While traditional chemistry concentrates on the covalent bond, supramolecular chemistry examines the weaker and reversible non-covalent interactions between molecules. These forces include hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi–pi interactions and electrostatic effects.

Important concepts advanced by supramolecular chemistry include molecular self-assembly, molecular folding, molecular recognition, host–guest chemistry, mechanically-interlocked molecular architectures, and dynamic covalent chemistry. The study of non-covalent interactions is crucial to understanding many biological processes that rely on these forces for structure and function. Biological systems are often the inspiration for supramolecular research.

↑ Return to Menu

Folding (chemistry) in the context of Molecular self-assembly

In chemistry and materials science, molecular self-assembly is the process by which molecules adopt a defined arrangement without guidance or management from an outside source. There are two types of self-assembly: intermolecular and intramolecular. Commonly, the term molecular self-assembly refers to the former, while the latter is more commonly called folding.

↑ Return to Menu