Folate in the context of Spina bifida


Folate in the context of Spina bifida

Folate Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Folate in the context of "Spina bifida"


⭐ Core Definition: Folate

Folate, also known as vitamin B9 and folacin, is one of the B vitamins. Manufactured folic acid, which is converted into folate by the body, is used as a dietary supplement and in food fortification as it is more stable during processing and storage. Folate is required for the body to make DNA and RNA and metabolise amino acids necessary for cell division and maturation of blood cells. As the human body cannot make folate, it is required in the diet, making it an essential nutrient. It occurs naturally in many foods. The recommended adult daily intake of folate in the U.S. is 400 micrograms from foods or dietary supplements.

Folate in the form of folic acid is used to treat anemia caused by folate deficiency. Folic acid is also used as a supplement by women during pregnancy to reduce the risk of neural tube defects (NTDs) in the baby. NTDs include anencephaly and spina bifida, among other defects. Low levels in early pregnancy are believed to be the cause of more than half of babies born with NTDs. More than 80 countries use either mandatory or voluntary fortification of certain foods with folic acid as a measure to decrease the rate of NTDs. Long-term supplementation with relatively large amounts of folic acid is associated with a small reduction in the risk of stroke and an increased risk of prostate cancer.

↓ Menu
HINT:

In this Dossier

Folate in the context of B vitamins

B vitamins are a class of water-soluble vitamins that play important roles in cell metabolism and synthesis of red blood cells. They are a chemically diverse class of compounds.

Dietary supplements containing all eight are referred to as a vitamin B complex. Individual B vitamins are referred to by B-number or by chemical name, such as B1 for thiamine, B2 for riboflavin, and B3 for niacin, while some are more commonly recognized by name than by number, such as pantothenic acid (B5), biotin (B7), and folate (B9). B vitamins are present in protein-rich foods, such as fish, poultry, meat, dairy products, and eggs; they are also found in leafy green vegetables, beans, and peas. Fortified foods, such as breakfast cereals, baked products, and infant formulas, may contain B vitamins.

View the full Wikipedia page for B vitamins
↑ Return to Menu

Folate in the context of Light skin

Light skin is a human skin color that has a low level of eumelanin pigmentation as an adaptation to environments of low UV radiation.Due to migrations of people in recent centuries, light-skinned populations today are found all over the world. Light skin is most commonly found amongst the native populations of Europe, East Asia, West Asia, Central Asia, South Asia, Siberia, and North Africa as measured through skin reflectance. People with light skin pigmentation are often referred to as "white", but the majority of countries officially categorize people by ethnic or national origin and not by perceived skin tone. Furthermore, definitions and perceptions of "ethnicity" or "race" vary greatly from country to country.

Humans with light skin pigmentation have skin with low amounts of eumelanin, and possess fewer melanosomes than humans with dark skin pigmentation. Light skin provides better absorption qualities of ultraviolet radiation, which helps the body to synthesize higher amounts of vitamin D for bodily processes such as calcium development. On the other hand, light-skinned people who live near the equator, where there is abundant sunlight, are at an increased risk of folate depletion. As a consequence of folate depletion, they are at a higher risk of DNA damage, birth defects, and numerous types of cancers, especially skin cancer. Humans with darker skin who live further from the tropics may have lower vitamin D levels, which can also lead to health complications, both physical and mental, including miscarriage and a greater risk of developing schizophrenia. These two observations form the "vitamin D–folate hypothesis", which attempts to explain why populations that migrated away from the tropics into areas of low UV radiation evolved to have light skin pigmentation.

View the full Wikipedia page for Light skin
↑ Return to Menu

Folate in the context of Folate deficiency

Folate deficiency, also known as vitamin B9 deficiency, is a low level of folate and derivatives in the body. This may result in megaloblastic anemia in which red blood cells become abnormally large, and folate deficiency anemia is the term given for this medical condition. Signs of folate deficiency are often subtle. Symptoms may include fatigue, heart palpitations, shortness of breath, feeling faint, open sores on the tongue, loss of appetite, changes in the color of the skin or hair, irritability, and behavioral changes. Temporary reversible infertility may occur. Folate deficiency anemia during pregnancy may give rise to the birth of low weight birth premature infants and infants with neural tube defects.

Not consuming enough folate can lead to folate deficiency within a few months. Otherwise, causes may include increased needs as with pregnancy, and in those with shortened red blood cell lifespan. Folate deficiency can be secondary to vitamin B12 deficiency or a defect in homocysteine methyl transferase that leads to a "folate trap" in which is an inactive metabolite that cannot be recovered. Diagnosis is typically confirmed by blood tests, including a complete blood count, and serum folate levels. Increased homocysteine levels may suggest deficiency state, but it is also affected by other factors. Vitamin B12 deficiency must be ruled out, if left untreated, may cause irreversible neurological damage.

View the full Wikipedia page for Folate deficiency
↑ Return to Menu

Folate in the context of Dark skin

Dark skin is a type of human skin color that is rich in melanin pigments. People with dark skin are often referred to as black people, although this usage can be ambiguous in some countries where it is also used to specifically refer to different ethnic groups or populations.

The evolution of dark skin is believed to have begun around 1.2 million years ago, in light-skinned early hominid species after they moved from the equatorial rainforest to the sunny savannas. In the heat of the savannas, better cooling mechanisms were required, which were achieved through the loss of body hair and development of more efficient perspiration. The loss of body hair led to the development of dark skin pigmentation, which acted as a mechanism of natural selection against folate (vitamin B9) depletion, and to a lesser extent, DNA damage. The primary factor contributing to the evolution of dark skin pigmentation was the breakdown of folate in reaction to ultraviolet radiation; the relationship between folate breakdown induced by ultraviolet radiation and reduced fitness as a failure of normal embryogenesis and spermatogenesis led to the selection of dark skin pigmentation. By the time modern Homo sapiens evolved, all humans were dark-skinned.

View the full Wikipedia page for Dark skin
↑ Return to Menu

Folate in the context of Riboflavin

Riboflavin, also known as vitamin B2, is a vitamin found in food and sold as a dietary supplement. It is essential to the formation of two major coenzymes, flavin mononucleotide and flavin adenine dinucleotide. These coenzymes are involved in energy metabolism, cellular respiration, and antibody production, as well as normal growth and development. The coenzymes are also required for the metabolism of niacin, vitamin B6, and folate. Riboflavin is prescribed to treat corneal thinning, and taken orally, may reduce the incidence of migraine headaches in adults.

Riboflavin deficiency is rare and is usually accompanied by deficiencies of other vitamins and nutrients. It may be prevented or treated by oral supplements or by injections. As a water-soluble vitamin, any riboflavin consumed in excess of nutritional requirements is not stored; it is either not absorbed or is absorbed and quickly excreted in urine, causing the urine to have a bright yellow tint. Natural sources of riboflavin include meat, fish and fowl, eggs, dairy products, green vegetables, mushrooms, and almonds. Some countries require its addition to grains.

View the full Wikipedia page for Riboflavin
↑ Return to Menu