Fluoresce in the context of Ultra-violet


Fluoresce in the context of Ultra-violet

Fluoresce Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Fluoresce in the context of "Ultra-violet"


⭐ Core Definition: Fluoresce

Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colored visible light. The color of the light emitted depends on the chemical composition of the substance. Fluorescent materials generally cease to glow nearly immediately when the radiation source stops. This distinguishes them from the other type of light emission, phosphorescence. Phosphorescent materials continue to emit light for some time after the radiation stops.This difference in duration is a result of quantum spin effects.

Fluorescence occurs when a photon from incoming radiation is absorbed by a molecule, exciting it to a higher energy level, followed by the emission of light as the molecule returns to a lower energy state. The emitted light may have a longer wavelength and, therefore, a lower photon energy than the absorbed radiation. For example, the absorbed radiation could be in the ultraviolet region of the electromagnetic spectrum (invisible to the human eye), while the emitted light is in the visible region. This gives the fluorescent substance a distinct color, best seen when exposed to UV light, making it appear to glow in the dark. However, any light with a shorter wavelength may cause a material to fluoresce at a longer wavelength. Fluorescent materials may also be excited by certain wavelengths of visible light, which can mask the glow, yet their colors may appear bright and intensified. Other fluorescent materials emit their light in the infrared or even the ultraviolet regions of the spectrum.

↓ Menu
HINT:

In this Dossier

Fluoresce in the context of Ultraviolet

Ultraviolet radiation or UV is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs, Cherenkov radiation, and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights.

The photons of ultraviolet have greater energy than those of visible light, from about 3.1 to 12 electron volts, around the minimum energy required to ionize atoms. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack sufficient energy, it can induce chemical reactions and cause many substances to glow or fluoresce. Many practical applications, including chemical and biological effects, are derived from the way that UV radiation can interact with organic molecules. These interactions can involve exciting orbital electrons to higher energy states in molecules potentially breaking chemical bonds. In contrast, the main effect of longer wavelength radiation is to excite vibrational or rotational states of these molecules, increasing their temperature. Short-wave ultraviolet light is ionizing radiation. Consequently, short-wave UV damages DNA and sterilizes surfaces with which it comes into contact.

View the full Wikipedia page for Ultraviolet
↑ Return to Menu

Fluoresce in the context of Tonic water

Tonic water is a carbonated soft drink in which quinine is dissolved. Originally used as a prophylactic against malaria, modern tonic water typically has a significantly lower quinine content and is often more sweetened than the original medicinal form. It is consumed for its distinctive bitter flavour.

View the full Wikipedia page for Tonic water
↑ Return to Menu

Fluoresce in the context of Teltron tube

A teltron tube (named for Teltron Inc., which is now owned by 3B Scientific Ltd.) is a type of cathode-ray tube used to demonstrate the properties of electrons. There were several different types made by Teltron including a diode, a triode, a Maltese Cross tube, a tube demonstrating electron diffraction, a simple deflection tube with a fluorescent screen, and one which could be used to measure the charge-to-mass ratio of an electron. The latter two contained an electron gun with deflecting plates. The beams can be bent by applying voltages to various electrodes in the tube or by holding a magnet close by. The electron beams are visible as fine bluish lines. This is accomplished by filling the tube with low-pressure helium (He) or Hydrogen (H2) gas. A few of the electrons in the beam collide with the helium atoms, causing them to fluoresce and emit light.

They are usually used to teach electromagnetic effects because they show how an electron beam is affected by electric fields and by magnetic fields such as the Lorentz force.

View the full Wikipedia page for Teltron tube
↑ Return to Menu