A fitness function is a particular type of objective or cost function that is used to summarize, as a single figure of merit, how close a given candidate solution is to achieving the set aims. It is an important component of evolutionary algorithms (EA), such as genetic programming, evolution strategies or genetic algorithms. An EA is a metaheuristic that reproduces the basic principles of biological evolution as a computer algorithm in order to solve challenging optimization or planning tasks, at least approximately. For this purpose, many candidate solutions are generated, which are evaluated using a fitness function in order to guide the evolutionary development towards the desired goal. Similar quality functions are also used in other metaheuristics, such as ant colony optimization or particle swarm optimization.
In the field of EAs, each candidate solution, also called an individual, is commonly represented as a string of numbers (referred to as a chromosome). After each round of testing or simulation the idea is to delete the n worst individuals, and to breed n new ones from the best solutions. Each individual must therefore to be assigned a quality number indicating how close it has come to the overall specification, and this is generated by applying the fitness function to the test or simulation results obtained from that candidate solution.