Fissure vent in the context of "Flood basalt"

Play Trivia Questions online!

or

Skip to study material about Fissure vent in the context of "Flood basalt"

Ad spacer

⭐ Core Definition: Fissure vent

A fissure vent, also known as a volcanic fissure, eruption fissure or simply a fissure, is a linear volcanic vent through which lava erupts, usually without any explosive activity. The vent is often a few metres wide and may be many kilometres long. Fissure vents can cause large flood basalts which run first in lava channels and later in lava tubes. After some time, the eruption tends to become focused at one or more spatter cones. Volcanic cones and their craters that are aligned along a fissure form a crater row. Small fissure vents may not be easily discernible from the air, but the crater rows (see Laki) or the canyons (see Eldgjá) built up by some of them are.

The dikes that feed fissures reach the surface from depths of a few kilometers and connect them to deeper magma reservoirs, often under volcanic centers. Fissures are usually found in or along rifts and rift zones, such as Iceland and the East African Rift. Fissure vents are often part of the structure of shield volcanoes.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Fissure vent in the context of Hydrothermal vent

Hydrothermal vents are fissures on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. The dispersal of hydrothermal fluids throughout the global ocean at active vent sites creates hydrothermal plumes. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.

Hydrothermal vents exist because the Earth is both geologically active and has large amounts of water on its surface and within its crust. Under the sea, they may form features called black smokers or white smokers, which deliver a wide range of elements to the world's oceans, thus contributing to global marine biogeochemistry. Relative to the majority of the deep sea, the areas around hydrothermal vents are biologically more productive, often hosting complex communities fueled by the chemicals dissolved in the vent fluids. Chemosynthetic bacteria and archaea found around hydrothermal vents form the base of the food chain, supporting diverse organisms including giant tube worms, clams, limpets, and shrimp. Active hydrothermal vents are thought to exist on Jupiter's moon Europa and Saturn's moon Enceladus, and it is speculated that ancient hydrothermal vents once existed on Mars.

↑ Return to Menu

Fissure vent in the context of Types of volcanic eruptions

A volcanic eruption occurs when material is expelled from a volcanic vent or fissure. Several types of volcanic eruptions have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.

There are three main types of volcanic eruptions. Magmatic eruptions involve the decompression of gas within magma that propels it forward. Phreatic eruptions are driven by the superheating of steam due to the close proximity of magma. This type exhibits no magmatic release, instead causing the granulation of existing rock. Phreatomagmatic eruptions are driven by the direct interaction of magma and water, as opposed to phreatic eruptions, where no fresh magma reaches the surface.

↑ Return to Menu

Fissure vent in the context of Lava

Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or underwater, usually at temperatures from 800 to 1,200 °C (1,470 to 2,190 °F). Lava may be erupted directly onto the land surface or onto the sea floor or it may be ejected into the atmosphere before falling back down. The solid volcanic rock resulting from subsequent cooling of the molten material is often also called lava.

A lava flow is an outpouring of lava during an effusive eruption. (An explosive eruption, by contrast, produces a mixture of volcanic ash and other fragments called tephra, not lava flows.) The viscosity of most molten lava is about that of ketchup, roughly 10,000 to 100,000 times that of water (the latter two substances measured at 25 °C (77 °F) and 1 atm). Even so, lava can flow great distances before cooling causes it to solidify, because lava exposed to air quickly develops a solid crust that insulates the remaining liquid lava, helping to keep it hot and inviscid enough to continue flowing.

↑ Return to Menu

Fissure vent in the context of 1669 eruption of Mount Etna

The 1669 eruption of Mount Etna is the largest-recorded historical eruption of that volcano on the east coast of Sicily, Italy. After several weeks of increasing seismic activity that damaged the town of Nicolosi and other settlements, an eruption fissure opened on the southeastern flank of Etna during the night of 10–11 March. Several more fissures became active during 11 March, erupting pyroclastics and tephra that fell over Sicily and accumulated to form the Monti Rossi scoria cone.

Lava disgorged from the eruption fissures and flowed southwards away from the vent, burying farmland and a number of towns during March and April, eventually covering 37–40 square kilometres (14–15 sq mi). The inhabitants of the towns fled to the city of Catania and sought refuge there; religious ceremonies were held in the city to implore the end of the eruption. In early April a branch of the lava flow advanced towards the city, and on the 1 or 16 April it reached the city walls, provoking the flight of many of its inhabitants. The city walls held up the lava, which began to flow into the Ionian Sea. More than two weeks later, parts of the flow surmounted the walls and penetrated Catania but did not cause much damage. The eruption ended in July.

↑ Return to Menu

Fissure vent in the context of Hawaiian eruption

A Hawaiian eruption is a type of volcanic eruption where lava flows from the vent in a relatively gentle, low level eruption; it is so named because it is characteristic of Hawaiian volcanoes. Typically they are effusive eruptions, with basaltic magmas of low viscosity, low content of gases, and high temperature at the vent. Very small amounts of volcanic ash are produced. This type of eruption occurs most often at hotspot volcanoes such as Kīlauea on Hawaii's big island and in Iceland, though it can occur near subduction zones (e.g. Medicine Lake Volcano in California) and rift zones. Hawaiian eruptions may occur along fissure vents, such as during the eruption of Mauna Loa in 1950, or at a central vent, such as during the 1959 eruption in Kīlauea Iki Crater, which created a lava fountain 580 meters (1,900 ft) high and formed a 38-meter cone named Puʻu Puaʻi. In fissure-type eruptions, lava spurts from a fissure on the volcano's rift zone and feeds lava streams that flow downslope. In central-vent eruptions, a fountain of lava can spurt to a height of 300 meters or more (heights of 1600 meters were reported for the 1986 eruption of Mount Mihara on Izu Ōshima, Japan).

Hawaiian eruptions usually start from an increase earthquake activity in a localized region followed with the formation of cracks in the ground from which a curtain of incandescent lava or several closely spaced lava fountains appear. The lava can overflow the fissure and form ʻaʻā or pāhoehoe style of flows. When such an eruption from a central cone is protracted, it can form lightly sloped shield volcanoes, for example Mauna Loa or Skjaldbreiður in Iceland. Geologists can predict where new eruptions will take place by tracking the earthquakes that precede the eruptions.

↑ Return to Menu