First fundamental form in the context of Dot product


First fundamental form in the context of Dot product

First fundamental form Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about First fundamental form in the context of "Dot product"


⭐ Core Definition: First fundamental form

In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space. The first fundamental form is denoted by the Roman numeral I,

↓ Menu
HINT:

In this Dossier

First fundamental form in the context of Parametric surface

A parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters . Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem, and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization.

View the full Wikipedia page for Parametric surface
↑ Return to Menu

First fundamental form in the context of Second fundamental form

In differential geometry, the second fundamental form (or shape tensor) is a quadratic form on the tangent plane of a smooth surface in the three-dimensional Euclidean space, usually denoted by (read "two"). Together with the first fundamental form, it serves to define extrinsic invariants of the surface, its principal curvatures. More generally, such a quadratic form is defined for a smooth immersed submanifold in a Riemannian manifold.

View the full Wikipedia page for Second fundamental form
↑ Return to Menu