Finite subdivision rule in the context of Symmetrical


Finite subdivision rule in the context of Symmetrical

Finite subdivision rule Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Finite subdivision rule in the context of "Symmetrical"


⭐ Core Definition: Finite subdivision rule

In mathematics, a finite subdivision rule is a recursive way of dividing a polygon or other two-dimensional shape into smaller and smaller pieces. Subdivision rules in a sense are generalizations of regular geometric fractals. Instead of repeating exactly the same design over and over, they have slight variations in each stage, allowing a richer structure while maintaining the elegant style of fractals. Subdivision rules have been used in architecture, biology, and computer science, as well as in the study of hyperbolic manifolds. Substitution tilings are a well-studied type of subdivision rule.

↓ Menu
HINT:

In this Dossier

Finite subdivision rule in the context of Symmetry

Symmetry (from Ancient Greek συμμετρία (summetría) 'agreement in dimensions, due proportion, arrangement') in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations, such as translation, reflection, rotation, or scaling. Although these two meanings of the word can sometimes be told apart, they are intricately related, and hence are discussed together in this article.

Mathematical symmetry may be observed with respect to the passage of time; as a spatial relationship; through geometric transformations; through other kinds of functional transformations; and as an aspect of abstract objects, including theoretic models, language, and music.

View the full Wikipedia page for Symmetry
↑ Return to Menu