Finite field in the context of Évariste Galois


Finite field in the context of Évariste Galois

⭐ Core Definition: Finite field

In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that has a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod when is a prime number.

The order of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number and every positive integer there are fields of order . All finite fields of a given order are isomorphic.

↓ Menu
HINT:

In this Dossier

Finite field in the context of Field (mathematics)

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

The best known fields are the field of rational numbers, the field of real numbers, and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and p-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements.

View the full Wikipedia page for Field (mathematics)
↑ Return to Menu

Finite field in the context of Algebraic number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

View the full Wikipedia page for Algebraic number theory
↑ Return to Menu

Finite field in the context of Division ring

In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element a has a multiplicative inverse; that is, an element usually denoted a, such that aa = aa = 1. So, (right) division may be defined as a / b = ab, but this notation is avoided, as one may have abba.

A commutative division ring is a field. Wedderburn's little theorem asserts that all finite division rings are commutative and therefore finite fields.

View the full Wikipedia page for Division ring
↑ Return to Menu

Finite field in the context of Hamming distance

In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences. It is named after the American mathematician Richard Hamming.

A major application is in coding theory, more specifically to block codes, in which the equal-length strings are vectors over a finite field.

View the full Wikipedia page for Hamming distance
↑ Return to Menu

Finite field in the context of Finite geometry

A finite geometry is any geometric system that has only a finite number of points.The familiar Euclidean geometry is not finite, because a Euclidean line contains infinitely many points. A geometry based on the graphics displayed on a computer screen, where the pixels are considered to be the points, would be a finite geometry. While there are many systems that could be called finite geometries, attention is mostly paid to the finite projective and affine spaces because of their regularity and simplicity. Other significant types of finite geometry are finite Möbius or inversive planes and Laguerre planes, which are examples of a general type called Benz planes, and their higher-dimensional analogs such as higher finite inversive geometries.

Finite geometries may be constructed via linear algebra, starting from vector spaces over a finite field; the affine and projective planes so constructed are called Galois geometries. Finite geometries can also be defined purely axiomatically. Most common finite geometries are Galois geometries, since any finite projective space of dimension three or greater is isomorphic to a projective space over a finite field (that is, the projectivization of a vector space over a finite field). However, dimension two has affine and projective planes that are not isomorphic to Galois geometries, namely the non-Desarguesian planes. Similar results hold for other kinds of finite geometries.

View the full Wikipedia page for Finite geometry
↑ Return to Menu

Finite field in the context of Fano plane

In finite geometry, the Fano plane (named after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is PG(2, 2). Here, PG stands for "projective geometry", the first parameter is the geometric dimension (it is a plane, of dimension 2) and the second parameter is the order (the number of points per line, minus one).

The Fano plane is an example of a finite incidence structure, so many of its properties can be established using combinatorial techniques and other tools used in the study of incidence geometries. Since it is a projective space, algebraic techniques can also be effective tools in its study.

View the full Wikipedia page for Fano plane
↑ Return to Menu

Finite field in the context of Root of unity

In mathematics, a root of unity is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. It is occasionally called a de Moivre number after French mathematician Abraham de Moivre.

Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly n nth roots of unity, except when n is a multiple of the (positive) characteristic of the field.

View the full Wikipedia page for Root of unity
↑ Return to Menu