Fiber optic in the context of "Fiber-optic communication"

Play Trivia Questions online!

or

Skip to study material about Fiber optic in the context of "Fiber-optic communication"

Ad spacer

⭐ Core Definition: Fiber optic

An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data transfer rates) than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss and are immune to electromagnetic interference. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, such as fiber optic sensors and fiber lasers.

Glass optical fibers are typically made by drawing, while plastic fibers can be made either by drawing or by extrusion. Optical fibers typically include a core surrounded by a transparent cladding material with a lower index of refraction. Light is kept in the core by the phenomenon of total internal reflection which causes the fiber to act as a waveguide. Fibers that support many propagation paths or transverse modes are called multi-mode fibers, while those that support a single mode are called single-mode fibers (SMF). Multi-mode fibers generally have a wider core diameter and are used for short-distance communication links and for applications where high power must be transmitted. Single-mode fibers are used for most communication links longer than 1,050 meters (3,440 ft).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Fiber optic in the context of Internet access

Internet access is a facility or service that provides connectivity for a computer, a computer network, or other network device to the Internet, and for individuals or organizations to access or use applications such as email and the World Wide Web. Internet access is offered for sale by an international hierarchy of Internet service providers (ISPs) using various networking technologies. At the retail level, many organizations, including municipal entities, also provide cost-free access to the general public. Types of connections range from fixed-line cable (such as DSL and fiber optic) to mobile (via cellular) and satellite.

The availability of Internet access to the general public began with the commercialization of the early Internet in the early 1990s, and has grown with the availability of useful applications, such as the World Wide Web. In 1995, only 0.04 percent of the world's population had access, with well over half of those living in the United States and consumer use was through dial-up. By the first decade of the 21st century, many consumers in developed nations used faster broadband technology. By 2014, 41 percent of the world's population had access, broadband was almost ubiquitous worldwide, and global average connection speeds exceeded one megabit per second.

↑ Return to Menu

Fiber optic in the context of Ethernet

Ethernet (/ˈθərnɛt/ EE-thər-net) is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

The original 10BASE5 Ethernet uses a thick coaxial cable as a shared medium. This was largely superseded by 10BASE2, which used a thinner and more flexible cable that was both less expensive and easier to use. More modern Ethernet variants use twisted pair and fiber optic links in conjunction with switches. Over the course of its history, Ethernet data transfer rates have been increased from the original 2.94 Mbit/s to the latest 800 Gbit/s, with rates up to 1.6 Tbit/s under development. The Ethernet standards include several wiring and signaling variants of the OSI physical layer.

↑ Return to Menu

Fiber optic in the context of Optomechanics

Optomechanics is the manufacture and maintenance of optical parts and devices. This includes the design and manufacture of hardware used to hold and align elements in optical systems, such as:

Optomechanics also covers the methods used to design and package compact and rugged optical trains, and the manufacture and maintenance of fiber optic materials

↑ Return to Menu