Fetal membranes in the context of "Amniotic egg"

Play Trivia Questions online!

or

Skip to study material about Fetal membranes in the context of "Amniotic egg"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Fetal membranes in the context of Amniote

Amniotes are tetrapod vertebrate animals belonging to the clade Amniota, a large group that comprises the vast majority of living terrestrial and semiaquatic vertebrates. Amniotes evolved from amphibious stem tetrapod ancestors during the Carboniferous period. Amniota is defined as the smallest crown clade (the group including all descendants of the last common ancestor) containing humans, the Greek tortoise, and the Nile crocodile.Amniotes represent a crucial evolutionary step in vertebrate history, marking the transition from aquatic to fully terrestrial life.

Amniotes are distinguished from the other living tetrapod clade — the non-amniote lissamphibians (frogs/toads, salamanders/newts and caecilians) — by: the development of three extraembryonic membranes (amnion for embryonic protection, chorion for gas exchange, and allantois for metabolic waste disposal or storage); internal fertilization; thicker and keratinized skin; costal respiration (breathing by expanding/constricting the rib cage); the presence of adrenocortical and chromaffin tissues as a discrete pair of glands near their kidneys; more complex kidneys; the presence of an astragalus for better extremity range of motion; the diminished role of skin breathing; and the complete loss of metamorphosis, gills, and lateral lines.

↑ Return to Menu

Fetal membranes in the context of Yolk sac

The yolk sac is a membranous sac attached to an embryo, formed by cells of the hypoblast layer of the bilaminar embryonic disc. This is alternatively called the umbilical vesicle by the Terminologia Embryologica (TE), though yolk sac is far more widely used. The yolk sac is one of the fetal membranes and is important in early embryonic blood supply. In humans much of it is incorporated into the primordial gut during the fourth week of embryonic development.

↑ Return to Menu