Ferroelectric RAM in the context of Dynamic random-access memory


Ferroelectric RAM in the context of Dynamic random-access memory

Ferroelectric RAM Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Ferroelectric RAM in the context of "Dynamic random-access memory"


⭐ Core Definition: Ferroelectric RAM

Ferroelectric RAM (FeRAM, F-RAM or FRAM) is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is an alternative non-volatile random-access memory technology that offers the same functionality as flash memory. An FeRAM chip contains a thin film of ferroelectric material, often lead zirconate titanate, commonly referred to as PZT. The atoms in the PZT layer change polarity in an electric field, thereby producing a power-efficient binary switch. However, the most important aspect of the PZT is that it is not affected by power disruption or magnetic interference, making FeRAM a reliable nonvolatile memory.

FeRAM's advantages over Flash include: lower power usage, faster write speeds and a much greater maximum read/write endurance (about 10 to 10 cycles). FeRAMs have data retention times of more than 10 years at +85 °C (and decades at lower temperatures). The primary disadvantages of FeRAM are much lower storage densities than flash devices, storage capacity limitations and higher cost. Like DRAM, FeRAM's read process is destructive, necessitating a write-after-read architecture.

↓ Menu
HINT:

In this Dossier

Ferroelectric RAM in the context of Microcontroller

A microcontroller (MC, uC, or μC) or microcontroller unit (MCU) is a small computer on a single integrated circuit. A microcontroller contains one or more processor cores along with memory and programmable input/output peripherals. Program memory in the form of NOR flash, OTP ROM, or ferroelectric RAM is also often included on the chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general-purpose applications consisting of various discrete chips.

In modern terminology, a microcontroller is similar to, but less sophisticated than, a system on a chip (SoC). A SoC may include a microcontroller as one of its components but usually integrates it with advanced peripherals like a graphics processing unit (GPU), a Wi-Fi module, or one or more coprocessors.

View the full Wikipedia page for Microcontroller
↑ Return to Menu