Fermi acceleration in the context of Shock wave


Fermi acceleration in the context of Shock wave

Fermi acceleration Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Fermi acceleration in the context of "Shock wave"


⭐ Core Definition: Fermi acceleration

Fermi acceleration, sometimes referred to as diffusive shock acceleration (a subclass of Fermi acceleration), is the acceleration that charged particles undergo when being repeatedly reflected, usually by a magnetic mirror (see also Centrifugal mechanism of acceleration). It receives its name from physicist Enrico Fermi who first proposed the mechanism. This is thought to be the primary mechanism by which particles gain non-thermal energies in astrophysical shock waves. It plays a very important role in many astrophysical models, mainly of shocks including solar flares and supernova remnants.

There are two types of Fermi acceleration: first-order Fermi acceleration (in shocks) and second-order Fermi acceleration (in the environment of moving magnetized gas clouds). In both cases the environment has to be collisionless in order for the mechanism to be effective. This is because Fermi acceleration only applies to particles with energies exceeding the thermal energies, and frequent collisions with surrounding particles will cause severe energy loss and as a result no acceleration will occur.

↓ Menu
HINT:

In this Dossier

Fermi acceleration in the context of Centrifugal mechanism of acceleration

Centrifugal acceleration of astroparticles to relativistic energies might take place in rotating astrophysical objects (see also Fermi acceleration). It is strongly believed that active galactic nuclei and pulsars have rotating magnetospheres, therefore, they potentially can drive charged particles to high and ultra-high energies. It is a proposed explanation for ultra-high-energy cosmic rays (UHECRs) and extreme-energy cosmic rays (EECRs) exceeding the Greisen–Zatsepin–Kuzmin limit.

View the full Wikipedia page for Centrifugal mechanism of acceleration
↑ Return to Menu