The Fenna–Matthews–Olson (FMO) complex is a water-soluble complex and was the first pigment-protein complex (PPC) to be structurally analyzed by x-ray spectroscopy. It appears in green sulfur bacteria and mediates the excitation energy transfer from light-harvesting chlorosomes to the membrane-embedded bacterial reaction center (bRC). Its structure is trimeric (C3-symmetry). Each of the three monomers contains eight bacteriochlorophyll a (BChl a) molecules. They are bound to the protein scaffold via chelation of their central magnesium atom either to amino acids of the protein (mostly histidine) or water-bridged oxygen atoms (only one BChl a of each monomer).
Since the structure is available, calculating structure-based optical spectra is possible for comparison with experimental optical spectra. In the simplest case only the excitonic coupling of the BChls is taken into account. More realistic theories consider pigment-protein coupling. An important property is the local transition energy (site energy) of the BChls, different for each, due to their individual local protein environment. The site energies of the BChls determine the direction of the energy flow.