Fast Fourier transform in the context of "Frequency domain"

Play Trivia Questions online!

or

Skip to study material about Fast Fourier transform in the context of "Frequency domain"

Ad spacer

⭐ Core Definition: Fast Fourier transform

A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa.

The DFT is obtained by decomposing a sequence of values into components of different frequencies. This operation is useful in many fields, but computing it directly from the definition is often too slow to be practical. An FFT rapidly computes such transformations by factorizing the DFT matrix into a product of sparse (mostly zero) factors. As a result, it manages to reduce the complexity of computing the DFT from , which arises if one simply applies the definition of DFT, to , where n is the data size. The difference in speed can be enormous, especially for long data sets where n may be in the thousands or millions.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Fast Fourier transform in the context of Analog image processing

Analog image processing is the use of an optical computer to process physical, optical images formed by light waves coming from an object, as opposed to the digital image processing and its use of digital computers to process pixelated, digital images. Correspondingly, a range of digital image processing techniques possess direct physical analogs. For example, fast Fourier transform algorithms are commonly implemented in digital phase correlation and other digital image processing techniques. These digital Fourier transforms can be considered to be the digitized approximation of methods utilizing Fourier transforming properties of an ideal lens.

↑ Return to Menu

Fast Fourier transform in the context of Phase correlation

Phase correlation is an approach to estimate the relative translative offset between two similar images (digital image correlation) or other data sets. It is commonly used in image registration and relies on a frequency-domain representation of the data, usually calculated by fast Fourier transforms. The term is applied particularly to a subset of cross-correlation techniques that isolate the phase information from the Fourier-space representation of the cross-correlogram.

↑ Return to Menu

Fast Fourier transform in the context of Mesocrystal

A mesocrystal is a material structure composed of numerous small crystals of similar size and shape, which are arranged in a regular periodic pattern. It is a form of oriented aggregation, where the small crystals have parallel crystallographic alignment but are spatially separated.

When the sizes of individual components are at the nanoscale, mesocrystals represent a new class of nanostructured solids made from crystiallographically oriented nanoparticles. The sole criterion for determining whether a material is mesocrystal is the unique crystallographically hierarchical structure, not its formation mechanism.

↑ Return to Menu

Fast Fourier transform in the context of Orthogonal frequency-division multiplexing

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.

OFDM is a frequency-division multiplexing (FDM) scheme that was introduced by Robert W. Chang of Bell Labs in 1966. In OFDM, the incoming bitstream representing the data to be sent is divided into multiple streams. Multiple closely spaced orthogonal subcarrier signals with overlapping spectra are transmitted, with each carrier modulated with bits from the incoming stream so multiple bits are being transmitted in parallel. Demodulation is based on fast Fourier transform algorithms. OFDM was improved by Weinstein and Ebert in 1971 with the introduction of a guard interval, providing better orthogonality in transmission channels affected by multipath propagation. Each subcarrier (signal) is modulated with a conventional modulation scheme (such as quadrature amplitude modulation or phase-shift keying) at a low symbol rate. This maintains total data rates similar to conventional single-carrier modulation schemes in the same bandwidth.

↑ Return to Menu