Fair coin in the context of Absolutely continuous random variable


Fair coin in the context of Absolutely continuous random variable

Fair coin Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Fair coin in the context of "Absolutely continuous random variable"


⭐ Core Definition: Fair coin

In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin. In theoretical studies, the assumption that a coin is fair is often made by referring to an ideal coin.

John Edmund Kerrich performed experiments in coin flipping and found that a coin made from a wooden disk about the size of a crown and coated on one side with lead landed heads (wooden side up) 679 times out of 1000. In this experiment the coin was tossed by balancing it on the forefinger, flipping it using the thumb so that it spun through the air for about a foot before landing on a flat cloth spread over a table. Edwin Thompson Jaynes claimed that when a coin is caught in the hand, instead of being allowed to bounce, the physical bias in the coin is insignificant compared to the method of the toss, where with sufficient practice a coin can be made to land heads 100% of the time. Exploring the problem of checking whether a coin is fair is a well-established pedagogical tool in teaching statistics.

↓ Menu
HINT:

In this Dossier

Fair coin in the context of Probability distribution

In probability theory and statistics, a probability distribution is a function that gives the probabilities of occurrence of possible events for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space).

For instance, if X is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of X would take the value 0.5 (1 in 2 or 1/2) for X = heads, and 0.5 for X = tails (assuming that the coin is fair). More commonly, probability distributions are used to compare the relative occurrence of many different random values.

View the full Wikipedia page for Probability distribution
↑ Return to Menu

Fair coin in the context of Information theory

Information theory is the mathematical study of the quantification, storage, and communication of information. The field was established and formalized by Claude Shannon in the 1940s, though early contributions were made in the 1920s through the works of Harry Nyquist and Ralph Hartley. It is at the intersection of electronic engineering, mathematics, statistics, computer science, neurobiology, physics, and electrical engineering.

A key measure in information theory is entropy. Entropy quantifies the amount of uncertainty involved in the value of a random variable or the outcome of a random process. For example, identifying the outcome of a fair coin flip (which has two equally likely outcomes) provides less information (lower entropy, less uncertainty) than identifying the outcome from a roll of a die (which has six equally likely outcomes). Some other important measures in information theory are mutual information, channel capacity, error exponents, and relative entropy. Important sub-fields of information theory include source coding, algorithmic complexity theory, algorithmic information theory and information-theoretic security.

View the full Wikipedia page for Information theory
↑ Return to Menu

Fair coin in the context of Checking whether a coin is fair

In statistics, the question of checking whether a coin is fair is one whose importance lies, firstly, in providing a simple problem on which to illustrate basic ideas of statistical inference and, secondly, in providing a simple problem that can be used to compare various competing methods of statistical inference, including decision theory. The practical problem of checking whether a coin is fair might be considered as easily solved by performing a sufficiently large number of trials, but statistics and probability theory can provide guidance on two types of question; specifically those of how many trials to undertake and of the accuracy of an estimate of the probability of turning up heads, derived from a given sample of trials.

A fair coin is an idealized randomizing device with two states (usually named "heads" and "tails") which are equally likely to occur. It is based on the coin flip used widely in sports and other situations where it is required to give two parties the same chance of winning. Either a specially designed chip or more usually a simple currency coin is used, although the latter might be slightly "unfair" due to an asymmetrical weight distribution, which might cause one state to occur more frequently than the other, giving one party an unfair advantage. So it might be necessary to test experimentally whether the coin is in fact "fair" – that is, whether the probability of the coin's falling on either side when it is tossed is exactly 50%. It is of course impossible to rule out arbitrarily small deviations from fairness such as might be expected to affect only one flip in a lifetime of flipping; also it is always possible for an unfair (or "biased") coin to happen to turn up exactly 10 heads in 20 flips. Therefore, any fairness test must only establish a certain degree of confidence in a certain degree of fairness (a certain maximum bias). In more rigorous terminology, the problem is of determining the parameters of a Bernoulli process, given only a limited sample of Bernoulli trials.

View the full Wikipedia page for Checking whether a coin is fair
↑ Return to Menu

Fair coin in the context of Discrete distribution

In probability theory and statistics, a probability distribution is a function that gives the probabilities of occurrence of possible events for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space).

Each random variable has a probability distribution. For instance, if X is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of X would take the value 0.5 (1 in 2 or 1/2) for X = heads, and 0.5 for X = tails (assuming that the coin is fair). More commonly, probability distributions are used to compare the relative occurrence of many different random values.

View the full Wikipedia page for Discrete distribution
↑ Return to Menu