FM radio in the context of Shortwave receiver


FM radio in the context of Shortwave receiver

FM radio Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about FM radio in the context of "Shortwave receiver"


⭐ Core Definition: FM radio

FM broadcasting is a method of radio broadcasting that uses frequency modulation (FM) of the radio broadcast carrier wave. Invented in 1933 by American engineer Edwin Armstrong, wide-band FM is used worldwide to transmit high-fidelity sound over broadcast radio. FM broadcasting offers higher fidelity—more accurate reproduction of the original program sound—than other broadcasting techniques, such as AM broadcasting. It is also less susceptible to common forms of interference, having less static and popping sounds than are often heard on AM, but with a more limited broadcast distance. Therefore, FM is used for most broadcasts of music and general audio (in the audio spectrum). FM radio stations use the very high frequency range of radio frequencies.

↓ Menu
HINT:

In this Dossier

FM radio in the context of Cable television

Cable television is a system of delivering television programming to consumers via radio frequency (RF) signals transmitted through coaxial cables, or in more recent systems, light pulses through fibre-optic cables. This contrasts with broadcast television, in which the television signal is transmitted over-the-air by radio waves and received by a television antenna, or satellite television, in which the television signal is transmitted over-the-air by radio waves from a communications satellite and received by a satellite dish on the roof. FM radio programming, high-speed Internet, telephone services, and similar non-television services may also be provided through these cables. Analog television was standard in the 20th century, but since the 2000s, cable systems have been upgraded to digital cable operation.

A cable channel (sometimes known as a cable network) is a television network available via cable television. Many of the same channels are distributed through satellite television. Alternative terms include non-broadcast channel or programming service, the latter being mainly used in legal contexts. The abbreviation CATV is used in the US for cable television and originally stood for community antenna television, from cable television's origins in 1948; in areas where over-the-air TV reception was limited by distance from transmitters or mountainous terrain, large community antennas were constructed, and cable was run from them to individual homes.

View the full Wikipedia page for Cable television
↑ Return to Menu

FM radio in the context of Headphones

Headphones are a pair of small loudspeaker drivers worn on or around the head over a user's ears. They are electroacoustic transducers, which convert an electrical signal to a corresponding sound. Headphones let a single user listen to an audio source privately, in contrast to a loudspeaker, which emits sound into the open air for anyone nearby to hear. Headphones are also known as earphones or, colloquially, cans. Circumaural (around the ear) and supra-aural (over the ear) headphones use a band over the top of the head to hold the drivers in place. Another type, known as earbuds or earpieces, consists of individual units that plug into the user's ear canal; within that category have been developed cordless air buds using wireless technology. A third type are bone conduction headphones, which typically wrap around the back of the head and rest in front of the ear canal, leaving the ear canal open. In the context of telecommunication, a headset is a combination of a headphone and microphone.

Headphones connect to a signal source such as an audio amplifier, radio, CD player, portable media player, mobile phone, video game console, or electronic musical instrument, either directly using a cord, or using wireless technology such as Bluetooth, DECT or FM radio. The first headphones were developed in the late 19th century for use by switchboard operators, to keep their hands free. Initially, the audio quality was mediocre and a step forward was the invention of high fidelity headphones.

View the full Wikipedia page for Headphones
↑ Return to Menu

FM radio in the context of Very high frequency

Very high frequency (VHF) is the ITU designation for the range of radio frequency electromagnetic waves (radio waves) from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter. Frequencies immediately below VHF are denoted high frequency (HF), and the next higher frequencies are known as ultra high frequency (UHF).

VHF radio waves propagate mainly by line-of-sight, so they are blocked by hills and mountains, although due to refraction they can travel somewhat beyond the visual horizon out to about 160 km (100 miles). Common uses for radio waves in the VHF band are Digital Audio Broadcasting (DAB) and FM radio broadcasting, television broadcasting, two-way land mobile radio systems (emergency, business, private use and military), long range data communication up to several tens of kilometers with radio modems, amateur radio, and marine communications. Air traffic control communications and air navigation systems (e.g. VOR and ILS) work at distances of 100 kilometres (62 miles) or more to aircraft at cruising altitude.

View the full Wikipedia page for Very high frequency
↑ Return to Menu

FM radio in the context of Radio frequency interference

Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade the performance of the circuit or even stop it from functioning. In the case of a data path, these effects can range from an increase in error rate to a total loss of the data. Both human-made and natural sources generate changing electrical currents and voltages that can cause EMI: ignition systems, cellular network of mobile phones, lightning, solar flares, and auroras (northern/southern lights). EMI frequently affects AM radios. It can also affect mobile phones, FM radios, and televisions, as well as observations for radio astronomy and atmospheric science.

EMI can be used intentionally for radio jamming, as in electronic warfare.

View the full Wikipedia page for Radio frequency interference
↑ Return to Menu

FM radio in the context of Vehicle audio

Vehicle audio is equipment installed in a car or other vehicle to provide in-car entertainment and information for the occupants. Such systems are popularly known as car stereos. Until the 1950s, it consisted of a simple AM radio. Additions since then have included FM radio (1952), 8-track tape players, Cassette decks, record players, CD players, DVD players, Blu-ray players, navigation systems, Bluetooth telephone integration and audio streaming, and smartphone controllers like CarPlay and Android Auto. Once controlled only from the dashboard with a few buttons, today they can be controlled by steering wheel controls and voice commands.

Initially implemented for listening to music and radio, vehicle audio is now part of car telematics, telecommunications, in-vehicle security, handsfree calling, navigation, and remote diagnostics systems. The same loudspeakers may also be used to minimize road and engine noise with active noise control, or they may be used to augment engine sounds, for example, making a small engine sound bigger. Vehicle audio systems have begun to move to digital platforms utilizing bus networks and optical cables for signal transfer rather than traditional analog cables.

View the full Wikipedia page for Vehicle audio
↑ Return to Menu

FM radio in the context of Transradio

TRANSRADIO SenderSysteme Berlin AG was a German radio communication systems producer, specialised in research into and development and design of AM, VHF/FM and DRM as well as military and commercial broadcast systems. For a time, it was a subsidiary of AMPEGON AG, a Swiss company and later an affiliate company of CESTRON International GmbH named Elsyscom GmbH.

View the full Wikipedia page for Transradio
↑ Return to Menu

FM radio in the context of Digital Multimedia Broadcasting

Digital multimedia broadcasting (DMB) is a digital radio transmission technology developed in South Korea as part of the national IT project for sending multimedia such as TV, radio and datacasting to mobile devices such as mobile phones, laptops and GPS navigation systems. This technology, sometimes known as mobile TV, should not be confused with Digital Audio Broadcasting (DAB) which was developed as a research project for the European Union.

DMB was developed in South Korea as the next generation digital technology to replace FM radio, but the technological foundations were laid by Prof. Dr. Gert Siegle and Dr. Hamed Amor at Bosch in Germany. The world's first official mobile TV service started in South Korea in May 2005, although trials were available much earlier. It can operate via satellite (S-DMB) or terrestrial (T-DMB) transmission. DMB has also some similarities with its former competing mobile TV standard, DVB-H.

View the full Wikipedia page for Digital Multimedia Broadcasting
↑ Return to Menu

FM radio in the context of Radio propagation

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for amateur radio communications, international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.

Several different types of propagation are used in practical radio transmission systems. Line-of-sight propagation means radio waves which travel in a straight line from the transmitting antenna to the receiving antenna. Line of sight transmission is used for medium-distance radio transmission, such as cell phones, cordless phones, walkie-talkies, wireless networks, FM radio, television broadcasting, radar, and satellite communication (such as satellite television). Line-of-sight transmission on the surface of the Earth is limited to the distance to the visual horizon, which depends on the height of transmitting and receiving antennas. It is the only propagation method possible at microwave frequencies and above.

View the full Wikipedia page for Radio propagation
↑ Return to Menu

FM radio in the context of Vatican Radio

Vatican Radio (Italian: Radio Vaticana; Latin: Statio Radiophonica Vaticana) is the official broadcasting service of Vatican City.

Established in 1931 by Guglielmo Marconi, today its programs are offered in 47 languages, and are sent out on short wave, DRM, medium wave, FM, satellite and the Internet. Since its inception, Vatican Radio has been maintained by the Jesuit Order. Vatican Radio preserved its independence during the rise of Fascist Italy and Nazi Germany.

View the full Wikipedia page for Vatican Radio
↑ Return to Menu

FM radio in the context of Omnidirectional antenna

In radio communication, an omnidirectional antenna is a class of antenna which radiates equal radio power in all directions perpendicular to an axis (azimuthal directions), with power varying with angle to the axis (elevation angle), declining to zero on the axis. When graphed in three dimensions (see graph) this radiation pattern is often described as doughnut-shaped. This is different from an isotropic antenna, which radiates equal power in all directions, having a spherical radiation pattern. Omnidirectional antennas oriented vertically are widely used for nondirectional antennas on the surface of the Earth because they radiate equally in all horizontal directions, while the power radiated drops off with elevation angle so little radio energy is aimed into the sky or down toward the earth and wasted.

Omnidirectional antennas are widely used for radio broadcasting antennas, and in mobile devices that use radio such as cell phones, FM radios, walkie-talkies, wireless computer networks, cordless phones, GPS, as well as for base stations that communicate with mobile radios, such as police and taxi dispatchers and aircraft communications.

View the full Wikipedia page for Omnidirectional antenna
↑ Return to Menu