Förster resonance energy transfer in the context of Dipole–dipole coupling


Förster resonance energy transfer in the context of Dipole–dipole coupling

⭐ Core Definition: Förster resonance energy transfer

Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). A donor chromophore, initially in its electronic excited state, may transfer energy to an acceptor chromophore through nonradiative dipole–dipole coupling. The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, making FRET extremely sensitive to small changes in distance.

Measurements of FRET efficiency can be used to determine if two fluorophores are within a certain distance of each other. Such measurements are used as a research tool in fields including biology and chemistry.

↓ Menu
HINT:

In this Dossier

Förster resonance energy transfer in the context of Light-harvesting complex

In biology, a light-harvesting complex or LHC is an aggregate consisting of proteins bound with chromophores (chlorophylls and carotenoids) that play a key role in photosynthesis. LHCs are arrayed around photosynthetic reaction centers in both plants and photosynthetic bacteria and collect more of the incoming light than would be captured by the reaction centers alone. The light captured by the chromophores excites molecules from their ground states to (short-lived) higher-energy states, known as the excited states. This energy is then focused toward the reaction centers by Förster resonance energy transfer.

Light-harvesting complexes are found in a wide variety among the different photosynthetic species, with no homology among the major groups.

View the full Wikipedia page for Light-harvesting complex
↑ Return to Menu

Förster resonance energy transfer in the context of Antenna complex

In biology, a light-harvesting complex, LHC, or antennae complex is an aggregate consisting of proteins bound with chromophores (chlorophylls and carotenoids) that play a key role in photosynthesis. They are one part of a photosystem, together with a reaction center. LHCs are arrayed around photosynthetic reaction centers in both plants and photosynthetic bacteria and collect more of the incoming light than would be captured by the reaction centers alone. The light captured by the chromophores excites molecules from their ground states to (short-lived) higher-energy states, known as the excited states. This energy is then focused toward the reaction centers by Förster resonance energy transfer.

Light-harvesting complexes are found in a wide variety among the different photosynthetic species, with no homology among the major groups.

View the full Wikipedia page for Antenna complex
↑ Return to Menu

Förster resonance energy transfer in the context of Cell biophysics

Cell biophysics (or cellular biophysics) is a sub-field of biophysics that focuses on physical principles underlying cell function. Sub-areas of current interest include statistical models of intracellular signaling dynamics, intracellular transport, cell mechanics (including membrane and cytoskeletal mechanics), molecular motors, biological electricity and genetic network theory. The field has benefited greatly from recent advances in live-cell molecular imaging techniques that allow spatial and temporal measurement of macromolecules and macromolecular function. Specialized imaging methods like FRET, FRAP, photoactivation and single molecule imaging have proven useful for mapping macromolecular transport, dynamic conformational changes in proteins and macromolecular interactions. Super-resolution microscopy allows imaging of cell structures below the optical resolution of light. Combining novel experimental tools with mathematical models grounded in the physical sciences has enabled significant recent breakthroughs in the field. Multiple centers across the world are advancing the research area

View the full Wikipedia page for Cell biophysics
↑ Return to Menu

Förster resonance energy transfer in the context of Photosystem

Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons. Photosystems are found in the thylakoid membranes of plants, algae, and cyanobacteria. These membranes are located inside the chloroplasts of plants and algae, and in the cytoplasmic membrane of photosynthetic bacteria. There are two kinds of photosystems: PSI and PSII.

PSII will absorb red light, and PSI will absorb far-red light. Although photosynthetic activity will be detected when the photosystems are exposed to either red or far-red light, the photosynthetic activity will be the greatest when plants are exposed to both wavelengths of light. Studies have actually demonstrated that the two wavelengths together have a synergistic effect on the photosynthetic activity, rather than an additive one.

View the full Wikipedia page for Photosystem
↑ Return to Menu