Extreme weather event in the context of "El Niño–Southern Oscillation"

Play Trivia Questions online!

or

Skip to study material about Extreme weather event in the context of "El Niño–Southern Oscillation"

Ad spacer

⭐ Core Definition: Extreme weather event

Extreme weather includes unexpected, unusual, severe, or unseasonal weather; weather at the extremes of the historical distribution—the range that has been seen in the past. Extreme events are based on a location's recorded weather history. The main types of extreme weather include heat waves, cold waves, droughts, and heavy precipitation or storm events, such as tropical cyclones. Extreme weather can have various effects, from natural hazards such as floods and landslides to social costs on human health and the economy. Severe weather is a particular type of extreme weather which poses risks to life and property.

Weather patterns in a given region vary with time, and so extreme weather can be attributed, at least in part, to the natural climate variability that exists on Earth. For example, the El Niño-Southern Oscillation (ENSO) or the North Atlantic oscillation (NAO) are climate phenomena that impact weather patterns worldwide. Generally speaking, one event in extreme weather cannot be attributed to any one single cause. However, certain system wide changes to global weather systems can lead to increased frequency or intensity of extreme weather events.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Extreme weather event in the context of Extinction risk from climate change

There are several plausible pathways that could lead to plant and animal species extinction from climate change. Every species has evolved to exist within a certain ecological niche, but climate change leads to changes of temperature and average weather patterns. These changes can push climatic conditions outside of the species' niche, and ultimately render it extinct. Normally, species faced with changing conditions can either adapt in place through microevolution or move to another habitat with suitable conditions. However, the speed of recent climate change is very fast. Due to this rapid change, for example cold-blooded animals (a category which includes amphibians, reptiles and all invertebrates) may struggle to find a suitable habitat within 50 km of their current location at the end of this century (for a mid-range scenario of future global warming).

Climate change also increases both the frequency and intensity of extreme weather events, which can directly wipe out regional populations of species. Those species occupying coastal and low-lying island habitats can also become extinct by sea level rise. This has already happened with Bramble Cay melomys in Australia. Finally, climate change has been linked with the increased prevalence and global spread of certain diseases affecting wildlife. This includes Batrachochytrium dendrobatidis, a fungus that is one of the main drivers of the worldwide decline in amphibian populations.

↑ Return to Menu

Extreme weather event in the context of Effects of climate change on biomes

Climate change is already now altering biomes, adversely affecting terrestrial and marine ecosystems. Climate change represents long-term changes in temperature and average weather patterns. This leads to a substantial increase in both the frequency and the intensity of extreme weather events. As a region's climate changes, a change in its flora and fauna follows. For instance, out of 4000 species analyzed by the IPCC Sixth Assessment Report, half were found to have shifted their distribution to higher latitudes or elevations in response to climate change.

Furthermore, climate change may cause ecological disruption among interacting species, via changes in behaviour and phenology, or via climate niche mismatch. For example, climate change can cause species to move in different directions, potentially disrupting their interactions with each other.

↑ Return to Menu