Expected utility hypothesis in the context of "Uncertainty"

Play Trivia Questions online!

or

Skip to study material about Expected utility hypothesis in the context of "Uncertainty"

Ad spacer

⭐ Core Definition: Expected utility hypothesis

The expected utility hypothesis is a foundational assumption in mathematical economics concerning decision making under uncertainty. It postulates that rational agents maximize utility, meaning the subjective desirability of their actions. Rational choice theory, a cornerstone of microeconomics, builds this postulate to model aggregate social behaviour.

The expected utility hypothesis states an agent chooses between risky prospects by comparing expected utility values (i.e., the weighted sum of adding the respective utility values of payoffs multiplied by their probabilities). The summarised formula for expected utility is where is the probability that outcome indexed by with payoff is realized, and function u expresses the utility of each respective payoff. Graphically the curvature of the u function captures the agent's risk attitude.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Expected utility hypothesis in the context of Lottery (probability)

In expected utility theory, a lottery is a discrete distribution of probability on a set of states of nature. The elements of a lottery correspond to the probabilities that each of the states of nature will occur, (e.g. Rain: 0.70, No Rain: 0.30). Much of the theoretical analysis of choice under uncertainty involves characterizing the available choices in terms of lotteries.

In economics, individuals are assumed to rank lotteries according to a rational system of preferences, although it is now accepted that people make irrational choices systematically. Behavioral economics studies what happens in markets in which some of the agents display human complications and limitations.

↑ Return to Menu

Expected utility hypothesis in the context of Game theory

Game theory is the study of mathematical models of strategic interactions. It has applications in many fields of social science, and is used extensively in economics, logic, systems science and computer science. Initially, game theory addressed two-person zero-sum games, in which a participant's gains or losses are exactly balanced by the losses and gains of the other participant. In the 1950s, it was extended to the study of non zero-sum games, and was eventually applied to a wide range of behavioral relations. It is now an umbrella term for the science of rational decision making in humans, animals, and computers.

Modern game theory began with the idea of mixed-strategy equilibria in two-person zero-sum games and its proof by John von Neumann. Von Neumann's original proof used the Brouwer fixed-point theorem on continuous mappings into compact convex sets, which became a standard method in game theory and mathematical economics. His paper was followed by Theory of Games and Economic Behavior (1944), co-written with Oskar Morgenstern, which considered cooperative games of several players. The second edition provided an axiomatic theory of expected utility, which allowed mathematical statisticians and economists to treat decision-making under uncertainty.

↑ Return to Menu

Expected utility hypothesis in the context of Optimal decision

An optimal decision is a decision that leads to at least as good a known or expected outcome as all other available decision options. It is an important concept in decision theory. In order to compare the different decision outcomes, one commonly assigns a utility value to each of them.

If there is uncertainty as to what the outcome will be but one has knowledge about the distribution of the uncertainty, then under the von Neumann–Morgenstern axioms the optimal decision maximizes the expected utility (a probability–weighted average of utility over all possible outcomes of a decision). Sometimes, the equivalent problem of minimizing the expected value of loss is considered, where loss is (–1) times utility. Another equivalent problem is minimizing expected regret.

↑ Return to Menu

Expected utility hypothesis in the context of Decision analysis

Decision analysis (DA) is the discipline comprising the philosophy, methodology, and professional practice necessary to address important decisions in a formal manner. Decision analysis includes many procedures, methods, and tools for identifying, clearly representing, and formally assessing important aspects of a decision; for prescribing a recommended course of action by applying the maximum expected-utility axiom to a well-formed representation of the decision; and for translating the formal representation of a decision and its corresponding recommendation into insight for the decision maker, and other corporate and non-corporate stakeholders.

↑ Return to Menu