Exocytosis in the context of "Synaptic cleft"

Play Trivia Questions online!

or

Skip to study material about Exocytosis in the context of "Synaptic cleft"

Ad spacer

⭐ Core Definition: Exocytosis

Exocytosis (/ˌɛkssˈtsɪs/) is a form of active transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell. As an active transport mechanism, exocytosis requires the use of energy to transport material. Exocytosis and its counterpart, endocytosis, are used by all cells because most chemical substances important to them are large polar molecules that cannot pass through the hydrophobic portion of the cell membrane by passive means. Exocytosis is the process by which a large amount of molecules are released; thus it is a form of bulk transport. Exocytosis occurs via secretory portals at the cell plasma membrane called porosomes. Porosomes are permanent cup-shaped lipoprotein structures at the cell plasma membrane, where secretory vesicles transiently dock and fuse to release intra-vesicular contents from the cell.

In exocytosis, membrane-bound secretory vesicles are carried to the cell membrane, where they dock and fuse at porosomes and their contents (i.e., water-soluble molecules) are secreted into the extracellular environment. This secretion is possible because the vesicle transiently fuses with the plasma membrane. In the context of neurotransmission, neurotransmitters are typically released from synaptic vesicles into the synaptic cleft via exocytosis; however, neurotransmitters can also be released via reverse transport through membrane transport proteins.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Exocytosis in the context of Vesicle (biology)

In cell biology, a vesicle is an organelle within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form naturally during the processes of secretion (exocytosis), uptake (endocytosis), and the transport of materials within the plasma membrane. Alternatively, they may be prepared artificially, in which case they are called liposomes (not to be confused with lysosomes). If there is only one phospholipid bilayer, the vesicles are called unilamellar liposomes; otherwise they are called multilamellar liposomes. The membrane enclosing the vesicle is also a lamellar phase, similar to that of the plasma membrane, and intracellular vesicles can fuse with the plasma membrane to release their contents outside the cell. Vesicles can also fuse with other organelles within the cell. A vesicle released from the cell is known as an extracellular vesicle.

Vesicles perform a variety of functions. Because it is separated from the cytosol, the inside of the vesicle can be made to be different from the cytosolic environment. For this reason, vesicles are a basic tool used by the cell for organizing cellular substances. Vesicles are involved in metabolism, transport, buoyancy control, and temporary storage of food and enzymes. They can also act as chemical reaction chambers.

↑ Return to Menu

Exocytosis in the context of Chemical synapse

Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body.

At a chemical synapse, one neuron releases neurotransmitter molecules into a small space (the synaptic cleft) that is adjacent to the postsynaptic cell (e.g., another neuron). The neurotransmitter molecules are contained within small sacs called synaptic vesicles, and are released into the synaptic cleft by exocytosis. These molecules then bind to neurotransmitter receptors on the postsynaptic cell. Finally, to terminate its action, the neurotransmitter is cleared from the cleft through one of several mechanisms, including enzymatic degradation or re-uptake, by specific transporters, either into the presynaptic cell or to neuroglia.

↑ Return to Menu

Exocytosis in the context of Phagosome

In cell biology, a phagosome is a vesicle formed around a particle engulfed by a phagocyte via phagocytosis. Professional phagocytes include macrophages, neutrophils, and dendritic cells (DCs).

A phagosome is formed by the fusion of the cell membrane around a microorganism, a senescent cell or an apoptotic cell. Phagosomes have membrane-bound proteins to recruit and fuse with lysosomes to form mature phagolysosomes. The lysosomes contain hydrolytic enzymes and reactive oxygen species (ROS) which kill and digest the pathogens. Phagosomes can also form in non-professional phagocytes, but they can only engulf a smaller range of particles, and do not contain ROS. The useful materials (e.g. amino acids) from the digested particles are moved into the cytosol, and waste is removed by exocytosis. Phagosome formation is crucial for tissue homeostasis and both innate and adaptive host defense against pathogens.

↑ Return to Menu

Exocytosis in the context of Porosomes

Porosomes are cup-shaped supramolecular structures in the cell membranes of eukaryotic cells where secretory vesicles transiently dock in the process of vesicle fusion and secretion. The transient fusion of secretory vesicle membrane at a porosome, base via SNARE proteins, results in the formation of a fusion pore or continuity for the release of intravesicular contents from the cell. After secretion is complete, the fusion pore temporarily formed at the base of the porosome is sealed. Porosomes are few nanometers in size and contain many different types of protein, especially chloride and calcium channels, actin, and SNARE proteins that mediate the docking and fusion of the vesicles with the cell membrane. Once the vesicles have docked with the SNARE proteins, they swell, which increases their internal pressure. They then transiently fuse at the base of the porosome, and these pressurized contents are ejected from the cell. Examination of cells following secretion using electron microscopy, demonstrate increased presence of partially empty vesicles following secretion. This suggested that during the secretory process, only a portion of the vesicular contents are able to exit the cell. This could only be possible if the vesicle were to temporarily establish continuity with the cell plasma membrane, expel a portion of its contents, then detach, reseal, and withdraw into the cytosol (endocytose). In this way, the secretory vesicle could be reused for subsequent rounds of exo-endocytosis, until completely empty of its contents.

Porosomes vary in size depending on the cell type. Porosome in the exocrine pancreas and in endocrine and neuroendocrine cells range from 100 nm to 180 nm in diameter while in neurons they range from 10 nm to 15 nm (about 1/10 the size of pancreatic porosomes). When a secretory vesicle containing v-SNARE docks at the porosome base containing t-SNARE, membrane continuity (ring complex) is formed between the two. The size of the t/v-SNARE complex is directly proportional to the size of the vesicle. These vesicles contain dehydrated proteins (non-active) which are activated once they are hydrated. GTP is required for the transport of water through the water channels or Aquaporins, and ions through ion channels to hydrate the vesicle. Once the vesicle fuses at the porosome base, the contents of the vesicle at high pressure are ejected from the cell.

↑ Return to Menu

Exocytosis in the context of Peptide hormone

Peptide hormones are hormones composed of peptide molecules. These hormones influence the endocrine system of animals, including humans. Most hormones are classified as either amino-acid-based hormones (amines, peptides, or proteins) or steroid hormones. Amino-acid-based hormones are water-soluble and act on target cells via second messenger systems, whereas steroid hormones, being lipid-soluble, diffuse through plasma membranes to interact directly with intracellular receptors in the cell nucleus.

Like all peptides, peptide hormones are synthesized in cells from amino acids based on mRNA transcripts, which are derived from DNA templates inside the cell nucleus. The initial precursors, known as preprohormones, undergo processing in the endoplasmic reticulum. This includes the removal of the N-terminal signal peptide and, in some cases, glycosylation, yielding prohormones. These prohormones are then packaged into secretory vesicles, which are stored and released via exocytosis in response to specific stimuli, such as an increase in intracellular Ca and cAMP levels.

↑ Return to Menu

Exocytosis in the context of Synaptic vesicles

In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impulses between neurons and are constantly recreated by the cell. The area in the axon that holds groups of vesicles is an axon terminal or "terminal bouton". Up to 130 vesicles can be released per bouton over a ten-minute period of stimulation at 0.2 Hz. In the visual cortex of the human brain, synaptic vesicles have an average diameter of 39.5 nanometers (nm) with a standard deviation of 5.1 nm.

↑ Return to Menu

Exocytosis in the context of Large dense core vesicles

Large dense core vesicle (LDCVs) are lipid vesicles in neurons and secretory cells which may be filled with neurotransmitters, such as catecholamines or neuropeptides. LDVCs release their content through SNARE-mediated exocytosis similar to synaptic vesicles. One key difference between synaptic vesicles and LDCVs is that protein synaptophysin which is present in the membrane of synaptic vesicles is absent in LDCVs. LDCVs have an electron dense core which appears as a black circle in micrographs obtained with transmission electron microscopy.

↑ Return to Menu