Event (relativity) in the context of "Higher-dimensional"

Play Trivia Questions online!

or

Skip to study material about Event (relativity) in the context of "Higher-dimensional"

Ad spacer

⭐ Core Definition: Event (relativity)

In relativity, an event is anything that happens that has a specific time and place in spacetime. For example, a glass breaking on the floor is an event; it occurs at a unique place and a unique time. Strictly speaking, the notion of an event is an idealization, in the sense that it specifies a definite time and place, whereas any actual event is bound to have a finite extent, both in time and in space.

The spacetime interval between two events:

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Event (relativity) in the context of Dimension

In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on it – for example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on it – for example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces.

In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that was found necessary to describe electromagnetism. The four dimensions (4D) of spacetime consist of events that are not absolutely defined spatially and temporally, but rather are known relative to the motion of an observer. Minkowski space first approximates the universe without gravity; the pseudo-Riemannian manifolds of general relativity describe spacetime with matter and gravity. 10 dimensions are used to describe superstring theory (6D hyperspace + 4D), 11 dimensions can describe supergravity and M-theory (7D hyperspace + 4D), and the state-space of quantum mechanics is an infinite-dimensional function space.

↑ Return to Menu

Event (relativity) in the context of Time dilation

Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity. The dilation compares "wristwatch" clock readings between events measured in different inertial frames and is not observed by visual comparison of clocks across moving frames.

These predictions of the theory of relativity have been repeatedly confirmed by experiment, and they are of practical concern, for instance in the operation of satellite navigation systems such as GPS and Galileo.

↑ Return to Menu

Event (relativity) in the context of Spacetime diagram

A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity. Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.

The history of an object's location through time traces out a line or curve on a spacetime diagram, referred to as the object's world line. Each point in a spacetime diagram represents a unique position in space and time and is referred to as an event.

↑ Return to Menu

Event (relativity) in the context of Light cone

In special and general relativity, a light cone (or null cone) is the path that a flash of light, emanating from a single event — localized to a single point in space and a single moment in time — and traveling in all directions, would take through spacetime.

↑ Return to Menu

Event (relativity) in the context of Gravitational time dilation

Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational potential increases (the clock moving away from the source of gravitation). Albert Einstein originally predicted this in his theory of relativity, and it has since been confirmed by tests of general relativity.

This effect has been demonstrated by noting that atomic clocks at differing altitudes (and thus different gravitational potential) will eventually show different times. The effects detected in such Earth-bound experiments are extremely small, with differences being measured in nanoseconds. Relative to Earth's age in billions of years, Earth's core is in effect 2.5 years younger than its surface. Demonstrating larger effects would require measurements at greater distances from the Earth, or a larger gravitational source.

↑ Return to Menu

Event (relativity) in the context of Latency (engineering)

Latency, from a general point of view, is a time delay between the cause and the effect of some physical change in the system being observed. Lag, as it is known in gaming circles, refers to the latency between the input to a simulation and the visual or auditory response, often occurring because of network delay in online games. The original meaning of “latency”, as used widely in psychology, medicine and most other disciplines, derives from “latent”, a word of Latin origin meaning “hidden”.  Its different and relatively recent meaning (this topic) of “lateness” or “delay” appears to derive from its superficial similarity to the word “late”, from the old English “laet”.

Latency is physically a consequence of the limited velocity at which any physical interaction can propagate. The magnitude of this velocity is always less than or equal to the speed of light. Therefore, every physical system with any physical separation (distance) between cause and effect will experience some sort of latency, regardless of the nature of the stimulation to which it has been exposed.

↑ Return to Menu

Event (relativity) in the context of Minkowski space

In physics, Minkowski space (or Minkowski spacetime) (/mɪŋˈkɔːfski, -ˈkɒf-/) is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.

The model helps show how a spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Mathematician Hermann Minkowski developed it from the work of Hendrik Lorentz, Henri Poincaré, and others, and said it "was grown on experimental physical grounds".

↑ Return to Menu