Ethology in the context of "Ecological"

Play Trivia Questions online!

or

Skip to study material about Ethology in the context of "Ecological"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Ethology in the context of Cultural universal

A cultural universal (also called an anthropological universal or human universal) is an element, pattern, trait, or institution that is common to all known human cultures worldwide. Taken together, the whole body of cultural universals is known as the human condition. Evolutionary psychologists hold that behaviors or traits that occur universally in all cultures are good candidates for evolutionary adaptations. Some anthropological and sociological theorists that take a cultural relativist perspective may deny the existence of cultural universals: the extent to which these universals are "cultural" in the narrow sense, or in fact biologically inherited behavior is an issue of "nature versus nurture". Prominent scholars on the topic include Emile Durkheim, George Murdock, Claude Lévi-Strauss, and Donald Brown.

↑ Return to Menu

Ethology in the context of Treatment of animals

Animal welfare is the quality of life and overall well-being of animals. Formal standards of animal welfare vary between contexts, but are debated mostly by animal welfare groups, legislators, and academics. Animal welfare science uses measures such as longevity, disease, immunosuppression, behavior, physiology, and reproduction, although there is debate about which of these best indicate animal welfare.

Respect for animal welfare is often based on the belief that nonhuman animals are sentient and that consideration should be given to their well-being or suffering, especially when they are under the care of humans. These concerns can include how animals are slaughtered for food, how they are used in scientific research, how they are kept (as pets, in zoos, farms, circuses, etc.), and how human activities affect the welfare and survival of wild species.

↑ Return to Menu

Ethology in the context of Ecology

Ecology (from Ancient Greek οἶκος (oîkos)  'house' and -λογία (-logía)  'study of') is the natural science of the relationships among living organisms and their environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere levels. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history.

Ecology is a branch of biology, and is the study of abundance, biomass, and distribution of organisms in the context of the environment. It encompasses life processes, interactions, and adaptations; movement of materials and energy through living communities; successional development of ecosystems; cooperation, competition, and predation within and between species; and patterns of biodiversity and its effect on ecosystem processes.

↑ Return to Menu

Ethology in the context of Waggle dance

Waggle dance is a term used in beekeeping and ethology for a particular figure-eight dance of the honey bee. By performing this dance, successful foragers can share information about the direction and distance to patches of flowers yielding nectar and pollen, to water sources, or to new nest-site locations with other members of the colony.

The waggle dance and the round dance are two forms of dance behaviour that are part of a continuous transition. As the distance between the resource and the hive increases, the round dance transforms into variations of a transitional dance, which, when communicating resources at even greater distances, becomes the waggle dance. In the case of Apis mellifera ligustica, the round dance is performed until the resource is about ten metres (33 ft) away from the hive, transitional dances are performed when the resource is at a distance of twenty to thirty metres (66 to 98 ft) away from the hive, and finally, when it is located at distances greater than forty metres (130 ft) from the hive, the waggle dance is performed. However, even close to the nest, the round dance can contain elements of the waggle dance, such as a waggle portion. It has therefore been suggested that the term waggle dance is better for describing both the waggle dance and the round dance.

↑ Return to Menu

Ethology in the context of Animal communication

Animal communication is the transfer of information from one or a group of animals (sender or senders) to one or more other animals (receiver or receivers) that affects the current or future behavior of the receivers. Information may be sent intentionally, as in a courtship display, or unintentionally, as in the transfer of scent from the predator to prey with kairomones. Information may be transferred to an "audience" of several receivers. Animal communication is a rapidly growing area of study in disciplines including animal behavior, sociology, neurology, and animal cognition. Many aspects of animal behavior, such as symbolic name use, emotional expression, learning, and sexual behavior, are being understood in new ways.

When the information from the sender changes the behavior of a receiver, the information is referred to as a "signal". Signalling theory predicts that for a signal to be maintained in the population, both the sender and receiver should usually receive some benefit from the interaction. Signal production by senders and the perception and subsequent response of receivers are thought to coevolve. Signals often involve multiple mechanisms, e.g., both visual and auditory, and for a signal to be understood, the coordinated behavior of both sender and receiver requires careful study.

↑ Return to Menu

Ethology in the context of Animal

Animals are multicellular, eukaryotic organisms comprising the biological kingdom Animalia (/ˌænɪˈmliə/). With few exceptions, animals consume organic material, breathe oxygen, have myocytes and are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Animals form a clade, meaning that they arose from a single common ancestor. Over 1.5 million living animal species have been described, of which around 1.05 million are insects, over 85,000 are molluscs, and around 65,000 are vertebrates. It has been estimated there are as many as 7.77 million animal species on Earth. Animal body lengths range from 8.5 μm (0.00033 in) to 33.6 m (110 ft). They have complex ecologies and interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology, and the study of animal behaviour is known as ethology.

The animal kingdom is divided into five major clades, namely Porifera, Ctenophora, Placozoa, Cnidaria and Bilateria. Most living animal species belong to the clade Bilateria, a highly proliferative clade whose members have a bilaterally symmetric and significantly cephalised body plan, and the vast majority of bilaterians belong to two large clades: the protostomes, which includes organisms such as arthropods, molluscs, flatworms, annelids and nematodes; and the deuterostomes, which include echinoderms, hemichordates and chordates, the latter of which contains the vertebrates. The much smaller basal phylum Xenacoelomorpha have an uncertain position within Bilateria.

↑ Return to Menu

Ethology in the context of History of biology

The history of biology traces the study of the living world from ancient to modern times. Although the concept of biology as a single coherent field arose in the 19th century, the biological sciences emerged from traditions of medicine and natural history reaching back to Ayurveda, ancient Egyptian medicine and the works of Aristotle, Theophrastus and Galen in the ancient Greco-Roman world. This ancient work was further developed in the Middle Ages by Muslim physicians and scholars such as Avicenna. During the European Renaissance and early modern period, biological thought was revolutionized in Europe by a renewed interest in empiricism and the discovery of many novel organisms. Prominent in this movement were Vesalius and Harvey, who used experimentation and careful observation in physiology, and naturalists such as Linnaeus and Buffon who began to classify the diversity of life and the fossil record, as well as the development and behavior of organisms. Antonie van Leeuwenhoek revealed by means of microscopy the previously unknown world of microorganisms, laying the groundwork for cell theory. The growing importance of natural theology, partly a response to the rise of mechanical philosophy, encouraged the growth of natural history (although it entrenched the argument from design).

Over the 18th and 19th centuries, biological sciences such as botany and zoology became increasingly professional scientific disciplines. Lavoisier and other physical scientists began to connect the animate and inanimate worlds through physics and chemistry. Explorer-naturalists such as Alexander von Humboldt investigated the interaction between organisms and their environment, and the ways this relationship depends on geography—laying the foundations for biogeography, ecology and ethology. Naturalists began to reject essentialism and consider the importance of extinction and the mutability of species. Cell theory provided a new perspective on the fundamental basis of life. These developments, as well as the results from embryology and paleontology, were synthesized in Charles Darwin's theory of evolution by natural selection. The end of the 19th century saw the fall of spontaneous generation and the rise of the germ theory of disease, though the mechanism of inheritance remained a mystery.

↑ Return to Menu

Ethology in the context of Zoology

Zoology (/zˈɒləi/ zoh-OL-ə-jee, UK also /zuˈ-/ zoo-) is the scientific study of animals. Its studies include the structure, embryology, classification, habits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. Zoology is one of the primary branches of biology. The term is derived from Ancient Greek ζῷον, zōion ('animal'), and λόγος, logos ('knowledge', 'study').

Although humans have always been interested in the natural history of the animals they saw around them, and used this knowledge to domesticate certain species, the formal study of zoology can be said to have originated with Aristotle. He viewed animals as living organisms, studied their structure and development, and considered their adaptations to their surroundings and the function of their parts. Modern zoology has its origins during the Renaissance and early modern period, with Carl Linnaeus, Antonie van Leeuwenhoek, Robert Hooke, Charles Darwin, Gregor Mendel and many others.

↑ Return to Menu

Ethology in the context of Behavioural sciences

Behavioural science is the branch of science concerned with human behaviour. It sits in the interstice between fields such as psychology, cognitive science, neuroscience, behavioral biology, behavioral genetics and social science. While the term can technically be applied to the study of behaviour amongst all living organisms, it is nearly always used with reference to humans as the primary target of investigation (though animals may be studied in some instances, e.g. invasive techniques).

↑ Return to Menu

Ethology in the context of List of life sciences

This list of life sciences comprises the branches of science that involve the scientific study of life — such as animals (including human beings), microorganisms, and plants. This is one of the two major branches of natural science, the other being physical science, which is concerned with non-living matter. Biology is the overall natural science that studies life, with the other life sciences as its sub-disciplines.

Some life sciences focus on a specific type of organism. For example, zoology is the study of animals, while botany is the study of plants. Other life sciences focus on aspects common to all or many life forms, such as anatomy and genetics. Some focus on the micro scale (e.g., molecular biology, biochemistry), while others focus on larger scales (e.g., cytology, immunology, ethology, pharmacy, ecology). Another major branch of life sciences involves understanding the mindneuroscience. Life-science discoveries are helpful in improving the quality and standard of life and have applications in health, agriculture, medicine, and the pharmaceutical and food science industries. For example, they have provided information on certain diseases, which has helped in the understanding of human health.

↑ Return to Menu