Erg in the context of "Radiosity (heat transfer)"

Play Trivia Questions online!

or

Skip to study material about Erg in the context of "Radiosity (heat transfer)"

Ad spacer

⭐ Core Definition: Erg

The erg is a unit of energy equal to 10 joules (100 nJ). It is not an SI unit, instead originating from the centimetre–gram–second system of units (CGS). Its name is derived from ergon (ἔργον), a Greek word meaning 'work' or 'task'.

An erg is the amount of work done by a force of one dyne exerted for a distance of one centimetre. In the CGS base units, it is equal to one gram centimetre-squared per second-squared (g⋅cm/s). It is thus equal to 10 joules or 100 nanojoules (nJ) in SI units.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Erg in the context of Radiosity (heat transfer)

↓ Explore More Topics
In this Dossier

Erg in the context of Irradiance

In radiometry, irradiance is the radiant flux received by a surface per unit area. The SI unit of irradiance is the watt per square metre (symbol W⋅m or W/m). The CGS unit erg per square centimetre per second (erg⋅cm⋅s) is often used in astronomy. Irradiance is often called intensity, but this term is avoided in radiometry where such usage leads to confusion with radiant intensity. In astrophysics, irradiance is called radiant flux.

Spectral irradiance is the irradiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The two forms have different dimensions and units: spectral irradiance of a frequency spectrum is measured in watts per square metre per hertz (W⋅m⋅Hz), while spectral irradiance of a wavelength spectrum is measured in watts per square metre per metre (W⋅m), or more commonly watts per square metre per nanometre (W⋅m⋅nm).

↑ Return to Menu

Erg in the context of Vacuum energy

Vacuum energy is an underlying background energy that exists in space throughout the entire universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum.

The effects of vacuum energy can be experimentally observed in various phenomena such as spontaneous emission, the Casimir effect, and the Lamb shift, and are thought to influence the behavior of the Universe on cosmological scales. Using the upper limit of the cosmological constant, the vacuum energy of free space has been estimated to be 10 joules (10 ergs), or ~5 GeV per cubic meter. However, in quantum electrodynamics, consistency with the principle of Lorentz covariance and with the magnitude of the Planck constant suggests a much larger value of 10 joules per cubic meter. This huge discrepancy is known as the cosmological constant problem or, colloquially, the "vacuum catastrophe."

↑ Return to Menu

Erg in the context of Radiant emittance

In radiometry, radiant exitance or radiant emittance is the radiant flux emitted by a surface per unit area, whereas spectral exitance or spectral emittance is the radiant exitance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. This is the emitted component of radiosity. The SI unit of radiant exitance is the watt per square metre (W/m), while that of spectral exitance in frequency is the watt per square metre per hertz (W·m·Hz) and that of spectral exitance in wavelength is the watt per square metre per metre (W·m)—commonly the watt per square metre per nanometre (W·m·nm). The CGS unit erg per square centimeter per second (erg·cm·s) is often used in astronomy. Radiant exitance is often called "intensity" in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.

↑ Return to Menu

Erg in the context of Rad (unit)

The rad is a unit of absorbed radiation dose, defined as 1 rad = 0.01 Gy = 0.01 J/kg. It was originally defined in CGS units in 1953 as the dose causing 100 ergs of energy to be absorbed by one gram of matter. The material absorbing the radiation can be human tissue, air, water, or any other substance.

It has been replaced by the gray (symbol Gy) in SI derived units. The rad is still used in the United States, although this is "strongly discouraged" in Chapter 5.2 of the Guide to the SI, which was written and published by the U.S. National Institute of Standards and Technology. However, the numerically equivalent SI unit submultiple, the centigray (symbol cGy), is widely used to report absorbed doses within radiotherapy. The roentgen, used to quantify the radiation exposure, may be related to the corresponding absorbed dose by use of the F-factor.

↑ Return to Menu

Erg in the context of Solar flux units

The solar flux unit (sfu) is a non-SI unit of spectral flux density often used in solar radio observations, such as the F10.7 solar activity index. It is equivalent to 10 watts per square metre per hertz (SI), 10 ergs per second per square centimetre per hertz (CGS), and 10 Jansky.

↑ Return to Menu