Equation in the context of "Relativistic energy"

Play Trivia Questions online!

or

Skip to study material about Equation in the context of "Relativistic energy"

Ad spacer

⭐ Core Definition: Equation

In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.

Solving an equation containing variables consists of determining which values of the variables make the equality true. The variables for which the equation has to be solved are also called unknowns, and the values of the unknowns that satisfy the equality are called solutions of the equation. There are two kinds of equations: identities and conditional equations. An identity is true for all values of the variables. A conditional equation is only true for particular values of the variables.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Equation in the context of Pythagorean theorem

In mathematics, the Pythagorean theorem or Pythagoras's theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation:The theorem is named for the Greek philosopher Pythagoras, born around 570 BC. The theorem has been proved numerous times by many different methods – possibly the most for any mathematical theorem. The proofs are diverse, including both geometric proofs and algebraic proofs, with some dating back thousands of years.

↑ Return to Menu

Equation in the context of Hyperbola

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

Besides being a conic section, a hyperbola can arise as the locus of points whose difference of distances to two fixed foci is constant, as a curve for each point of which the rays to two fixed foci are reflections across the tangent line at that point, or as the solution of certain bivariate quadratic equations such as the reciprocal relationship In practical applications, a hyperbola can arise as the path followed by the shadow of the tip of a sundial's gnomon, the shape of an open orbit such as that of a celestial object exceeding the escape velocity of the nearest gravitational body, or the scattering trajectory of a subatomic particle, among others.

↑ Return to Menu

Equation in the context of Algebraic equation

In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial, usually with rational numbers for coefficients.

For example, is an algebraic equation with integer coefficients and

↑ Return to Menu

Equation in the context of Ad hoc

Ad hoc is a Latin phrase meaning literally 'for this'. In English, it typically signifies a solution designed for a specific purpose, problem, or task rather than a generalized solution adaptable to collateral instances (compare with a priori).

Common examples include ad hoc committees and commissions created at the national or international level for a specific task, and the term is often used to describe arbitration (ad hoc arbitration). In other fields, the term could refer to a military unit created under special circumstances (see task force), a handcrafted network protocol (e.g., ad hoc network), a temporary collaboration among geographically-linked franchise locations (of a given national brand) to issue advertising coupons, or a purpose-specific equation in mathematics or science.

↑ Return to Menu

Equation in the context of Expression (mathematics)

In mathematics, an expression is an arrangement of symbols following the context-dependent, syntactic conventions of mathematical notation. Symbols can denote numbers, variables, operations, and functions. Other symbols include punctuation marks and brackets, used for grouping where there is not a well-defined order of operations.

Expressions are commonly distinguished from formulas: expressions usually denote mathematical objects, whereas formulas are statements about mathematical objects. This is analogous to natural language, where a noun phrase refers to an object, and a whole sentence refers to a fact. For example, and are both expressions, while the inequality is a formula. However, formulas are often considered as expressions that can be evaluated to the Boolean values true or false.

↑ Return to Menu

Equation in the context of Algebraic operation

In mathematics, a basic algebraic operation is a mathematical operation similar to any one of the common operations of elementary algebra, which include addition, subtraction, multiplication, division, raising to a whole number power, and taking roots (fractional power). The operations of elementary algebra may be performed on numbers, in which case they are often called arithmetic operations. They may also be performed, in a similar way, on variables, algebraic expressions, and more generally, on elements of algebraic structures, such as groups and fields.

An algebraic operation on a set may be defined more formally as a function that maps to the tuples of a given length of elements of . The length of the tuples is called the arity of the operation, and each member of the tuple is called an operand. The most common case is the case of arity two, where the operation is called a binary operation and the operands form an ordered pair. A unary operation is an operation of arity one that has only one operand; for example, the square root. An example of a ternary operation (arity three) is the triple product.

↑ Return to Menu

Equation in the context of Linear equation

In mathematics, a linear equation is an equation that may be put in the form where are the variables (or unknowns), and are the coefficients, which are often real numbers. The coefficients may be considered as parameters of the equation and may be arbitrary expressions, provided they do not contain any of the variables. To yield a meaningful equation, the coefficients are required to not all be zero.

Alternatively, a linear equation can be obtained by equating to zero a linear polynomial over some field, from which the coefficients are taken.

↑ Return to Menu

Equation in the context of History of mathematical notation

The history of mathematical notation covers the introduction, development, and cultural diffusion of mathematical symbols and the conflicts between notational methods that arise during a notation's move to popularity or obsolescence. Mathematical notation comprises the symbols used to write mathematical equations and formulas. Notation generally implies a set of well-defined representations of quantities and symbols operators. The history includes Hindu–Arabic numerals, letters from the Roman, Greek, Hebrew, and German alphabets, and a variety of symbols invented by mathematicians over the past several centuries.

The historical development of mathematical notation can be divided into three stages:

↑ Return to Menu

Equation in the context of Whewell equation

The Whewell equation of a plane curve is an equation that relates the tangential angle (φ) with arc length (s), where the tangential angle is the angle between the tangent to the curve at some point and the x-axis, and the arc length is the distance along the curve from a fixed point. These quantities do not depend on the coordinate system used except for the choice of the direction of the x-axis, so this is an intrinsic equation of the curve, or, less precisely, the intrinsic equation. If one curve is obtained from another curve by translation then their Whewell equations will be the same.

When the relation is a function, so that tangential angle is given as a function of arc length, certain properties become easy to manipulate. In particular, the derivative of the tangential angle with respect to arc length is equal to the curvature. Thus, taking the derivative of the Whewell equation yields a Cesàro equation for the same curve.

↑ Return to Menu