Energy density in the context of Lithium ion


Energy density in the context of Lithium ion

Energy density Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Energy density in the context of "Lithium ion"


⭐ Core Definition: Energy density

There are different types of energy stored, corresponding to a particular type of reaction. In order of the typical magnitude of the energy stored, examples of reactions are: nuclear, chemical (including electrochemical), electrical, pressure, material deformation or in electromagnetic fields. Nuclear reactions take place in stars and nuclear power plants, both of which derive energy from the binding energy of nuclei. Chemical reactions are used by organisms to derive energy from food and by automobiles from the combustion of gasoline. Liquid hydrocarbons (fuels such as gasoline, diesel and kerosene) are today the densest way known to economically store and transport chemical energy at a large scale (1 kg of diesel fuel burns with the oxygen contained in ≈ 15 kg of air). Burning local biomass fuels supplies household energy needs (cooking fires, oil lamps, etc.) worldwide. Electrochemical reactions are used by devices such as laptop computers and mobile phones to release energy from batteries.

↓ Menu
HINT:

In this Dossier

Energy density in the context of Big Bang

The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The uniformity of the universe, known as the horizon and flatness problems, is explained through cosmic inflation: a phase of accelerated expansion during the earliest stages. Detailed measurements of the expansion rate of the universe place the initial singularity at an estimated 13.787±0.02 billion years ago, which is considered the age of the universe. A wide range of empirical evidence strongly favors the Big Bang event, which is now widely accepted.

Extrapolating this cosmic expansion backward in time using the known laws of physics, the models describe an extraordinarily hot and dense primordial universe. Physics lacks a widely accepted theory that can model the earliest conditions of the Big Bang. As the universe expanded, it cooled sufficiently to allow the formation of subatomic particles, and later atoms. These primordial elements—mostly hydrogen, with some helium and lithium—then coalesced under the force of gravity aided by dark matter, forming early stars and galaxies. Measurements of the redshifts of supernovae indicate that the expansion of the universe is accelerating, an observation attributed to a concept called dark energy.

View the full Wikipedia page for Big Bang
↑ Return to Menu

Energy density in the context of Alcohol fuel

Various alcohols are used as fuel for internal combustion engines. The first four aliphatic alcohols (methanol, ethanol, propanol, and butanol) are of interest as fuels because they can be synthesized chemically or biologically, and they have characteristics which allow them to be used in internal combustion engines. The general chemical formula for alcohol fuel is CnH2n+1OH.

Most methanol is produced from natural gas, although it can be produced from biomass using very similar chemical processes. Ethanol is commonly produced from biological material through fermentation processes. Biobutanol has the advantage in combustion engines in that its energy density is closer to gasoline than the simpler alcohols (while still retaining over 25% higher octane rating); however, biobutanol is currently more difficult to produce than ethanol or methanol. When obtained from biological materials and/or biological processes, they are known as bioalcohols (e.g. "bioethanol"). There is no chemical difference between biologically produced and chemically produced alcohols.

View the full Wikipedia page for Alcohol fuel
↑ Return to Menu

Energy density in the context of Protein (nutrient)

Proteins are essential nutrients for the human body. They are one of the constituents of body tissue and also serve as a fuel source. As fuel, proteins have the same energy density as carbohydrates: 17 kJ (4 kcal) per gram. The defining characteristic of protein from a nutritional standpoint is its amino acid composition.

Proteins are polymer chains made of amino acids linked by peptide bonds. During human digestion, proteins are broken down in the stomach into smaller polypeptide chains via hydrochloric acid and protease actions. This is crucial for the absorption of the essential amino acids that cannot be biosynthesized by the body.

View the full Wikipedia page for Protein (nutrient)
↑ Return to Menu

Energy density in the context of Nuclear battery

An atomic battery, nuclear battery, radioisotope battery or radioisotope generator uses energy from the decay of a radioactive isotope to generate electricity. Like a nuclear reactor, it generates electricity from nuclear energy, but it differs by not using a chain reaction. Although commonly called batteries, atomic batteries are technically not electrochemical and cannot be charged or recharged. Although they are very costly, they have extremely long lives and high energy density, so they are typically used as power sources for equipment that must operate unattended for long periods, such as spacecraft, pacemakers, medical devices, underwater systems, and automated scientific stations in remote parts of the world.

Nuclear batteries began in 1913, when Henry Moseley first demonstrated a current generated by charged-particle radiation. Since RCA's initial nuclear research and development in the early 1950s, many types and methods have been designed to extract electrical energy from nuclear sources.

View the full Wikipedia page for Nuclear battery
↑ Return to Menu

Energy density in the context of Wave shoaling

In fluid dynamics, wave shoaling is the effect by which surface waves, entering shallower water, increase in wave height. It is caused by the fact that the group velocity, which is also the wave-energy transport velocity, decreases with water depth. Under stationary conditions, a decrease in transport speed must be compensated by an increase in energy density in order to maintain a constant energy flux. Shoaling waves will also exhibit a reduction in wavelength while the frequency remains constant.

In other words, as the waves approach the shore and the water gets shallower, the waves get taller, slow down, and get closer together.

View the full Wikipedia page for Wave shoaling
↑ Return to Menu

Energy density in the context of Coal mining in the United Kingdom

Coal mining in the United Kingdom dates back to Roman times and occurred in many different parts of the country. Britain's coalfields are associated with Northumberland and Durham, North and South Wales, Yorkshire, the Scottish Central Belt, Lancashire, Cumbria, the East and West Midlands and Kent. After 1972, coal mining quickly collapsed and had practically disappeared by the 21st century. Production fell from 228 million tonnes in 1957 to just 107 thousand tonnes in 2024, while coal consumption fell from 216 million to 2 million tonnes in the same time period. Employment in coal mines fell from a peak of 1,191,000 in 1920 to 695,000 in 1956, 247,000 in 1976, 44,000 in 1993, 2,000 in 2015, and to 360 in 2022.

Almost all onshore coal resources in the UK occur in rocks of the Carboniferous period, some of which extend under the North Sea. Bituminous coal is present in most of Britain's coalfields and is 86% to 88% carbon. In Northern Ireland, there are extensive deposits of lignite which is less energy-dense based on oxidation (combustion) at ordinary combustion temperatures. In 2015, EURACOAL estimated that the UK has 3.56 billion tonnes of hard coal resources.

View the full Wikipedia page for Coal mining in the United Kingdom
↑ Return to Menu

Energy density in the context of Specific energy

Specific energy or massic energy is energy per unit mass. It is also known as gravimetric energy density, which is not to be confused with energy density, which is defined as energy per unit volume. It is used to quantify, for example, stored heat and other thermodynamic properties of substances such as specific internal energy, specific enthalpy, specific Gibbs free energy, and specific Helmholtz free energy. It may also be used for the kinetic energy or potential energy of a body. Specific energy is an intensive property, whereas energy and mass are extensive properties.

The SI unit for specific energy is the joule per kilogram (J/kg). Other units still in use worldwide in some contexts are the kilocalorie per gram (Cal/g or kcal/g), mostly in food-related topics, and watt-hours per kilogram (W⋅h/kg) in the field of batteries. In some countries the Imperial unit BTU per pound (Btu/lb) is used in some engineering and applied technical fields.

View the full Wikipedia page for Specific energy
↑ Return to Menu

Energy density in the context of Equation of state (cosmology)

In cosmology, the equation of state of a perfect fluid is characterized by a dimensionless number , equal to the ratio of its pressure to its energy density : It is closely related to the thermodynamic equation of state and ideal gas law.

View the full Wikipedia page for Equation of state (cosmology)
↑ Return to Menu

Energy density in the context of Lithium-ion batteries

A lithium-ion battery, or Li-ion battery, is a type of rechargeable battery that uses the reversible intercalation of Li ions into electronically conducting solids to store energy. Li-ion batteries are characterized by higher specific energy, energy density, and energy efficiency and a longer cycle life and calendar life than other types of rechargeable batteries. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991; over the following 30 years, their volumetric energy density increased threefold while their cost dropped tenfold. In late 2024 global demand passed terawatt-hour per year, while production capacity was more than twice that.

The invention and commercialization of Li-ion batteries has had a large impact on technology, as recognized by the 2019 Nobel Prize in Chemistry.Li-ion batteries have enabled portable consumer electronics, laptop computers, cellular phones, and electric cars. Li-ion batteries also see significant use for grid-scale energy storage as well as military and aerospace applications.

View the full Wikipedia page for Lithium-ion batteries
↑ Return to Menu

Energy density in the context of Sound energy

In physics, sound energy is a form of energy that can be heard by living things. Only those waves that have a frequency of 20 Hz to 20 kHz are audible to humans. However, this range is an average and will slightly change from individual to individual. Sound waves that have frequencies below 20 Hz are called infrasonic and those above 20 kHz are called ultrasonic. Sound is a longitudinal mechanical wave and as such consists physically in oscillatory elastic compression and in oscillatory displacement of a fluid. Therefore, the medium acts as storage for both potential and kinetic energy.

Consequently, the sound energy in a volume of interest is defined as the sum of the potential and kinetic energy densities integrated over that volume:

View the full Wikipedia page for Sound energy
↑ Return to Menu

Energy density in the context of Supercapacitor

A supercapacitor (SC), also called an ultracapacitor, is a high-capacity capacitor, with a capacitance value much higher than solid-state capacitors but with lower voltage limits. It bridges the gap between electrolytic capacitors and rechargeable batteries. It typically stores 10 to 100 times more energy per unit mass or energy per unit volume than electrolytic capacitors, can accept and deliver charge much faster than batteries, and tolerates many more charge and discharge cycles than rechargeable batteries.

Unlike ordinary capacitors, supercapacitors do not use a conventional solid dielectric, but rather, they use electrostatic double-layer capacitance and electrochemical pseudocapacitance, both of which contribute to the total energy storage of the capacitor.

View the full Wikipedia page for Supercapacitor
↑ Return to Menu

Energy density in the context of Gas to liquid

Gas to liquids (GTL) is a refinery process to convert natural gas or other gaseous hydrocarbons into longer-chain hydrocarbons, such as gasoline or diesel fuel. Methane-rich gases are converted into liquid synthetic fuels. Two general strategies exist: (i) direct partial combustion of methane to methanol and (ii) Fischer–Tropsch-like processes that convert carbon monoxide and hydrogen into hydrocarbons. Strategy ii is followed by diverse methods to convert the hydrogen-carbon monoxide mixtures to liquids. Direct partial combustion has been demonstrated in nature but not replicated commercially. Technologies reliant on partial combustion have been commercialized mainly in regions where natural gas is inexpensive.

The motivation for GTL is to produce liquid fuels, which are more readily transported than methane. Methane must be cooled below its critical temperature of −82.3 °C in order to be liquified under pressure. Because of the associated cryogenic apparatus, LNG tankers are used for transport. Methanol is a conveniently handled combustible liquid, but its energy density is half of that of gasoline.

View the full Wikipedia page for Gas to liquid
↑ Return to Menu

Energy density in the context of RP-1

RP-1 (Rocket Propellant-1 or Refined Petroleum-1) and similar fuels like RG-1 and T-1 are highly refined kerosene formulations used as rocket fuel. Liquid-fueled rockets that use RP-1 as fuel are known as kerolox rockets. In their engines, RP-1 is atomized, mixed with liquid oxygen (LOX), and ignited to produce thrust. Developed in the 1950s, RP-1 is outwardly similar to other kerosene-based fuels like Jet A and JP-8 used in turbine engines but is manufactured to stricter standards. While RP-1 is widely used globally, the primary rocket kerosene formulations in Russia and other former Soviet countries are RG-1 and T-1, which have slightly higher densities.

Compared to other rocket fuels, RP-1 provides several advantages with a few tradeoffs. Compared to liquid hydrogen, it offers a lower specific impulse, but can be stored at ambient temperatures, has a lower explosion risk, and although its specific energy is lower, its higher density results in greater energy density. Compared to hydrazine, another liquid fuel that can be stored at ambient temperatures, RP-1 is far less toxic and carcinogenic.

View the full Wikipedia page for RP-1
↑ Return to Menu

Energy density in the context of Lead–acid battery

The lead–acid battery is a type of rechargeable battery. First invented in 1859 by French physicist Gaston Planté, it was the first type of rechargeable battery ever created. Compared to the more modern rechargeable batteries, lead–acid batteries have relatively low energy density and heavier weight. Despite this, they are able to supply high surge currents. These features, along with their low cost, make them useful for motor vehicles in order to provide the high current required by starter motors. Lead–acid batteries suffer from relatively short cycle lifespan (usually less than 500 deep cycles) and overall lifespan (due to the double sulfation in the discharged state), as well as long charging times.

As they are not as expensive when compared to newer technologies, lead–acid batteries are widely used even when surge current is not important and other designs could provide higher energy densities. In 1999, lead–acid battery sales accounted for 40–50% of the value from batteries sold worldwide (excluding China and Russia), equivalent to a manufacturing market value of about US$15 billion. Large-format lead–acid designs are widely used for storage in backup power supplies in telecommunications networks such as for cell sites, high-availability emergency power systems as used in hospitals, and stand-alone power systems. For these roles, modified versions of the standard cell may be used to improve storage times and reduce maintenance requirements. Gel cell and absorbed glass mat batteries are common in these roles, collectively known as valve-regulated lead–acid (VRLA) batteries.

View the full Wikipedia page for Lead–acid battery
↑ Return to Menu