Emissivity in the context of "Black body"

Play Trivia Questions online!

or

Skip to study material about Emissivity in the context of "Black body"

Ad spacer

⭐ Core Definition: Emissivity

The emissivity of the surface of a material is its effectiveness in emitting energy as thermal radiation. Thermal radiation is electromagnetic radiation that most commonly includes both visible radiation (light) and infrared radiation, which is not visible to human eyes. A portion of the thermal radiation from very hot objects (see photograph) is easily visible to the eye.

The emissivity of a surface depends on its chemical composition and geometrical structure. Quantitatively, it is the ratio of the thermal radiation from a surface to the radiation from an ideal black surface at the same temperature as given by the Stefan–Boltzmann law. (A comparison with Planck's law is used if one is concerned with particular wavelengths of thermal radiation.) The ratio varies from 0 to 1 for ordinary surfaces.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Emissivity in the context of Thermography

Infrared thermography (IRT), also known as thermal imaging, is a measurement and imaging technique in which a thermal camera detects infrared radiation originating from the surface of objects. This radiation has two main components: thermal emission from the object's surface, which depends on its temperature and emissivity, and reflected radiation from surrounding sources. When the object is not (fully) opaque, i.e. exhibits nonzero transmissivity at the cameras operating wavelengths, transmitted radiation also contributes to the observed signal. The result is a visible image called a thermogram. Thermal cameras most commonly operate in the long-wave infrared (LWIR) range (7–14 μm); less frequently, systems designed for the mid-wave infrared (MWIR) range (3–5 μm) are used.

Since infrared radiation is emitted by all objects with a temperature above absolute zero according to the black body radiation law, thermography makes it possible to see one's environment with or without visible illumination. The amount of radiation emitted by an object increases with temperature, and thermography allows one to see variations in temperature. When viewed through a thermal imaging camera, warm objects stand out well against cooler backgrounds. For example, humans and other warm-blooded animals become easily visible against their environment in day or night. As a result, thermography is particularly useful to the military and other users of surveillance cameras.

↑ Return to Menu

Emissivity in the context of Effective temperature

The effective temperature (aka ET) of a body such as a star or planet is the temperature of a black body that would emit the same total energy as electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature when the body's emissivity curve (as a function of wavelength) is not known.

When the star's or planet's net emissivity in the relevant wavelength band is less than unity (less than that of a black body), the actual temperature of the body will be higher than the effective temperature. The net emissivity may be low due to surface or atmospheric properties, such as the greenhouse effect.

↑ Return to Menu

Emissivity in the context of Infrared thermometer

An infrared thermometer is a thermometer which infers temperature from a portion of the thermal radiation, sometimes called black-body radiation, emitted by the object being measured. They are sometimes called laser thermometers as a laser is used to help aim the thermometer, or non-contact thermometers or temperature guns, to describe the device's ability to measure temperature from a distance. By knowing the amount of infrared energy emitted by the object and its emissivity, the object's temperature can often be determined within a certain range of its actual temperature. Infrared thermometers are a subset of devices known as "thermal radiation thermometers".

Sometimes, especially near ambient temperatures, readings may be subject to error due to the reflection of radiation from a hotter body, or due to an incorrectly assumed emissivity.

↑ Return to Menu

Emissivity in the context of ASTER GDEM

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a Japanese remote sensing instrument onboard the Terra satellite launched by NASA in 1999. It has been collecting data since February 2000.

ASTER provides high-resolution images of Earth in 14 different bands of the electromagnetic spectrum, ranging from visible to thermal infrared light. The resolution of images ranges between 15 and 90 meters. ASTER data is used to create detailed maps of surface temperature of land, emissivity, reflectance, and elevation.

↑ Return to Menu