Elliptic curve in the context of "Point at infinity"

Play Trivia Questions online!

or

Skip to study material about Elliptic curve in the context of "Point at infinity"

Ad spacer

⭐ Core Definition: Elliptic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:

for some coefficients a and b in K. The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition 4a + 27b ≠ 0, that is, being square-free in x.) It is always understood that the curve is really sitting in the projective plane, with the point O being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic curves; see § Elliptic curves over a general field below.)

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Elliptic curve in the context of Wiles's proof of Fermat's Last Theorem

Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were believed to be impossible to prove using previous knowledge by almost all mathematicians at the time.

Wiles first announced his proof on 23 June 1993 at a lecture in Cambridge entitled "Modular Forms, Elliptic Curves and Galois Representations". However, in September 1993 the proof was found to contain an error. One year later on 19 September 1994, in what he would call "the most important moment of [his] working life", Wiles stumbled upon a revelation that allowed him to correct the proof to the satisfaction of the mathematical community. The corrected proof was published in 1995 in the journal Annals of Mathematics in the form of two articles, one authored by Wiles and the other co-authored by Wiles and Richard Taylor. Together, the two papers are 129 pages long and consumed more than seven years of Wiles's research time.

↑ Return to Menu

Elliptic curve in the context of Andrew Wiles

Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specialising in number theory. He is best known for proving Fermat's Last Theorem, for which he was awarded the 2016 Abel Prize and the 2017 Copley Medal and for which he was appointed a Knight Commander of the Order of the British Empire in 2000. In 2018, Wiles was appointed the first Regius Professor of Mathematics at Oxford. Wiles is also a 1997 MacArthur Fellow.

Wiles was born in Cambridge to theologian Maurice Frank Wiles and Patricia Wiles. While spending much of his childhood in Nigeria, Wiles developed an interest in mathematics and in Fermat's Last Theorem in particular. After moving to Oxford and graduating from there in 1974, he worked on unifying Galois representations, elliptic curves and modular forms, starting with Barry Mazur's generalizations of Iwasawa theory. In the early 1980s, Wiles spent a few years at the University of Cambridge before moving to Princeton University, where he worked on expanding out and applying Hilbert modular forms. In 1986, upon reading Ken Ribet's seminal work on Fermat's Last Theorem, Wiles set out to prove the modularity theorem for semistable elliptic curves, which implied Fermat's Last Theorem. By 1993, he had been able to convince a knowledgeable colleague that he had a proof of Fermat's Last Theorem, though a flaw was subsequently discovered. After an insight on 19 September 1994, Wiles and his student Richard Taylor were able to circumvent the flaw, and published the results in 1995, to widespread acclaim.

↑ Return to Menu

Elliptic curve in the context of Algebraic geometry

Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular points, inflection points and points at infinity. More advanced questions involve the topology of the curve and the relationship between curves defined by different equations.

↑ Return to Menu

Elliptic curve in the context of Modularity theorem

In number theory, the modularity theorem states that elliptic curves over the field of rational numbers are related to modular forms in a particular way. Andrew Wiles and Richard Taylor proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem (FLT). Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001. Before that, the statement was known as the Taniyama–Shimura conjecture, Taniyama–Shimura–Weil conjecture, or the modularity conjecture for elliptic curves.

↑ Return to Menu

Elliptic curve in the context of Ribet's theorem

Ribet's theorem (earlier called the epsilon conjecture or ε-conjecture) is part of number theory. It concerns properties of Galois representations associated with modular forms. It was proposed by Jean-Pierre Serre and proven by Ken Ribet. The proof was a significant step towards the proof of Fermat's Last Theorem (FLT). As shown by Serre and Ribet, the Taniyama–Shimura conjecture (whose status was unresolved at the time) and the epsilon conjecture together imply that FLT is true.

In mathematical terms, Ribet's theorem shows that if the Galois representation associated with an elliptic curve has certain properties, then that curve cannot be modular (in the sense that there cannot exist a modular form that gives rise to the same representation).

↑ Return to Menu

Elliptic curve in the context of Generalized Riemann hypothesis

The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case (not the number field case).

Global L-functions can be associated to elliptic curves, number fields (in which case they are called Dedekind zeta-functions), Maass forms, and Dirichlet characters (in which case they are called Dirichlet L-functions). When the Riemann hypothesis is formulated for Dedekind zeta-functions, it is known as the extended Riemann hypothesis (ERH) and when it is formulated for Dirichlet L-functions, it is known as the generalised Riemann hypothesis (GRH). Another approach to generalization of Riemann hypothesis was given by Atle Selberg and his introduction of class of function satisfying certain properties rather than specific functions, nowadays known as Selberg class. These three statements will be discussed in more detail below. (Many mathematicians use the label generalized Riemann hypothesis to cover the extension of the Riemann hypothesis to all global L-functions, not only the special case of Dirichlet L-functions.)

↑ Return to Menu

Elliptic curve in the context of Fred Diamond

Fred Irvin Diamond (born November 19, 1964) is a mathematician, known for his role in proving the modularity theorem for elliptic curves. His research interest is in modular forms and Galois representations.

↑ Return to Menu