Element (mathematics) in the context of Sequential


Element (mathematics) in the context of Sequential

Element (mathematics) Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Element (mathematics) in the context of "Sequential"


⭐ Core Definition: Element (mathematics)

In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called A containing the first four positive integers (), one could say that "3 is an element of A", expressed notationally as .

↓ Menu
HINT:

In this Dossier

Element (mathematics) in the context of Set (mathematics)

In mathematics, a set is a collection of different things; the things are elements or members of the set and are typically mathematical objects: numbers, symbols, points in space, lines, other geometric shapes, variables, or other sets. A set may be finite or infinite. There is a unique set with no elements, called the empty set; a set with a single element is a singleton.

Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century.

View the full Wikipedia page for Set (mathematics)
↑ Return to Menu

Element (mathematics) in the context of Mathematical space

In mathematics, a space is a set (sometimes known as a universe) endowed with a structure defining the relationships among the elements of the set.A subspace is a subset of the parent space which retains the same structure.While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself.

A space consists of selected mathematical objects that are treated as points, and selected relationships between these points. The nature of the points can vary widely: for example, the points can represent numbers, functions on another space, or subspaces of another space. It is the relationships that define the nature of the space. More precisely, isomorphic spaces are considered identical, where an isomorphism between two spaces is a one-to-one correspondence between their points that preserves the relationships. For example, the relationships between the points of a three-dimensional Euclidean space are uniquely determined by Euclid's axioms, and all three-dimensional Euclidean spaces are considered identical.

View the full Wikipedia page for Mathematical space
↑ Return to Menu

Element (mathematics) in the context of Sequence

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.

For example, (M, A, R, Y) is a sequence of letters with the letter "M" first and "Y" last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be finite, as in these examples, or infinite, such as the sequence of all even positive integers (2, 4, 6, ...).

View the full Wikipedia page for Sequence
↑ Return to Menu

Element (mathematics) in the context of Metric space

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are a general setting for studying many of the concepts of mathematical analysis and geometry.

The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another.

View the full Wikipedia page for Metric space
↑ Return to Menu

Element (mathematics) in the context of Binary operation

In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.

More specifically, a binary operation on a set is a binary function that maps every pair of elements of the set to an element of the set. Examples include the familiar arithmetic operations like addition, subtraction, multiplication, set operations like union, complement, intersection. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups.

View the full Wikipedia page for Binary operation
↑ Return to Menu

Element (mathematics) in the context of Set inclusion

In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B. The relationship of one set being a subset of another is called inclusion (or sometimes containment). A is a subset of B may also be expressed as B includes (or contains) A or A is included (or contained) in B. A k-subset is a subset with k elements.

When quantified, is represented as

View the full Wikipedia page for Set inclusion
↑ Return to Menu

Element (mathematics) in the context of Counting

Counting is the process of determining the number of elements of a finite set of objects; that is, determining the size of a set. The traditional way of counting consists of continually increasing a (mental or spoken) counter by a unit for every element of the set, in some order, while marking (or displacing) those elements to avoid visiting the same element more than once, until no unmarked elements are left; if the counter was set to one after the first object, the value after visiting the final object gives the desired number of elements. The related term enumeration refers to uniquely identifying the elements of a finite (combinatorial) set or infinite set by assigning a number to each element.

Counting sometimes involves numbers other than one; for example, when counting money, counting out change, "counting by twos" (2, 4, 6, 8, 10, 12, ...), or "counting by fives" (5, 10, 15, 20, 25, ...).

View the full Wikipedia page for Counting
↑ Return to Menu

Element (mathematics) in the context of Intersection

In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their intersection is the point at which they meet. More generally, in set theory, the intersection of sets is defined to be the set of elements which belong to all of them.

Intersections can be thought of either collectively or individually, see Intersection (geometry) for an example of the latter. The definition given above exemplifies the collective view, whereby the intersection operation always results in a well-defined and unique, although possibly empty, set of mathematical objects. In contrast, the individual view focuses on the separate members of this set. Given this view, intersections need not be unique, as shown by the two points of intersection between a circle and a line pictured. Similarly, (individual) intersections need not exist as between two parallel but distinct lines in Euclidean geometry.

View the full Wikipedia page for Intersection
↑ Return to Menu

Element (mathematics) in the context of Urelement

In set theory, a branch of mathematics, an urelement or ur-element (from the German prefix ur-, 'primordial') is an object that is not a set, but that may be an element of a set. It is also referred to as an atom or individual. Ur-elements are also not identical with the empty set.

View the full Wikipedia page for Urelement
↑ Return to Menu

Element (mathematics) in the context of Indexed family

In mathematics, a family, or indexed family, is informally a collection of objects, each associated with an index from some index set. For example, a family of real numbers, indexed by the set of integers, is a collection of real numbers, where a given function selects one real number for each integer (possibly the same) as indexing.

More formally, an indexed family is a mathematical function together with its domain and image (that is, indexed families and mathematical functions are technically identical, just points of view are different). Often the elements of the set are referred to as making up the family. In this view, an indexed family is interpreted as a collection of indexed elements, instead of a function. The set is called the index set of the family, and is the indexed set.

View the full Wikipedia page for Indexed family
↑ Return to Menu

Element (mathematics) in the context of Nonempty

In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set.

Any set other than the empty set is called non-empty.

View the full Wikipedia page for Nonempty
↑ Return to Menu

Element (mathematics) in the context of Additive inverse

In mathematics, the additive inverse of an element x, denoted −x, is the element that when added to x, yields the additive identity. This additive identity is often the number 0 (zero), but it can also refer to a more generalized zero element.

In elementary mathematics, the additive inverse is often referred to as the opposite number, or the negative of a number. The unary operation of arithmetic negation is closely related to subtraction and is important in solving algebraic equations. Not all sets where addition is defined have an additive inverse, such as the natural numbers.

View the full Wikipedia page for Additive inverse
↑ Return to Menu

Element (mathematics) in the context of Universal quantification

In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", "for every", or "given an arbitrary element". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.

It is usually denoted by the turned A (∀) logical operator symbol, which, when used together with a predicate variable, is called a universal quantifier ("x", "∀(x)", or sometimes by "(x)" alone). Universal quantification is distinct from existential quantification ("there exists"), which only asserts that the property or relation holds for at least one member of the domain.

View the full Wikipedia page for Universal quantification
↑ Return to Menu

Element (mathematics) in the context of Finite set

In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example,

is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the cardinality (or the cardinal number) of the set. A set that is not a finite set is called an infinite set. For example, the set of all positive integers is infinite:

View the full Wikipedia page for Finite set
↑ Return to Menu