Electroreception in the context of "Echidna"

Play Trivia Questions online!

or

Skip to study material about Electroreception in the context of "Echidna"

Ad spacer

⭐ Core Definition: Electroreception

Electroreception and electrogenesis are the closely related biological abilities to perceive electrical stimuli and to generate electric fields. Both are used to locate prey; stronger electric discharges are used in a few groups of fishes, such as the electric eel, to stun prey. The capabilities are found almost exclusively in aquatic or amphibious animals, since water is a much better conductor of electricity than air. In passive electrolocation, objects such as prey are detected by sensing the electric fields they create. In active electrolocation, fish generate a weak electric field and sense the different distortions of that field created by objects that conduct or resist electricity. Active electrolocation is practised by two groups of weakly electric fish, the order Gymnotiformes (knifefishes) and family Mormyridae (elephantfishes), and by the monotypic genus Gymnarchus (African knifefish). An electric fish generates an electric field using an electric organ, modified from muscles in its tail. The field is called weak if it is only enough to detect prey, and strong if it is powerful enough to stun or kill. The field may be in brief pulses, as in the elephantfishes, or a continuous wave, as in the knifefishes. Some strongly electric fish, such as the electric eel, locate prey by generating a weak electric field, and then discharge their electric organs strongly to stun the prey; other strongly electric fish, such as the electric ray, electrolocate passively. The stargazers are unique in being strongly electric but not using electrolocation.

The electroreceptive ampullae of Lorenzini evolved early in the history of the vertebrates; they are found in both cartilaginous fishes such as sharks, and in bony fishes such as coelacanths and sturgeons, and must therefore be ancient. Most bony fishes have secondarily lost their ampullae of Lorenzini, but other non-homologous electroreceptors have repeatedly evolved, including in two groups of mammals, the monotremes (platypus and echidnas) and the cetaceans (Guiana dolphin).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Electroreception in the context of Platypus

The platypus (Ornithorhynchus anatinus), sometimes referred to as the duck-billed platypus, is a semiaquatic, egg-laying mammal endemic to eastern Australia, including Tasmania. The platypus is the sole living representative of its family Ornithorhynchidae and genus Ornithorhynchus, though a number of related species appear in the fossil record. Together with the four species of echidna, it is one of the five extant species of monotremes, mammals that lay eggs instead of giving birth to live young. Like other monotremes, the platypus has a sense of electrolocation, which it uses to detect prey in water while its eyes, ears and nostrils are closed. It is one of the few species of venomous mammals, as the male platypus has a spur on each hind foot that delivers an extremely painful venom.

The unusual appearance of this egg-laying, duck-billed, beaver-tailed mammal at first baffled European naturalists. In 1799, the first scientists to examine a preserved platypus body judged it a fake made of several animals sewn together. The unique features of the platypus make it important in the study of evolutionary biology, and a recognisable and iconic symbol of Australia. It is culturally significant to several Aboriginal peoples, who also used to hunt it for food, and has appeared on stamps and currency.

↑ Return to Menu

Electroreception in the context of Paddlefish

Paddlefish are members of the ray-finned fish family Polyodontidae, which belong to the basal order Acipenseriformes, one of two living groups within this order alongside sturgeons (Acipenseridae). Their most distinctive feature is an elongated rostrum that enhances electroreception, allowing them to detect prey in murky water. Both recent and fossil paddlefish occur exclusively in North America and Eastern Asia.

Eight species are known, six of which are prehistoric and only known from fossils—five from North America and one from China. Of the two species to have survived until modern times, the American paddlefish (Polyodon spathula) inhabits the Mississippi River basin in the United States, while the now extinct Chinese paddlefish (Psephurus gladius, also known as the "Chinese swordfish") inhabited the Yangtze and Yellow River basins in China. The earliest known paddlefish fossil, Protopsephurus, dates to approximately 120 million years ago during the Early Cretaceous epoch in China.

↑ Return to Menu

Electroreception in the context of Lateral line

The lateral line, also called the lateral line organ, is a system of sensory organs found in fish, used to detect movement, vibration, and pressure gradients in the surrounding water. The sensory ability is achieved via modified epithelial cells, known as hair cells, which respond to displacement caused by motion and transduce these signals into electrical impulses via excitatory synapses. Lateral lines play an important role in schooling behavior, predation, and orientation.

Early in the evolution of fish, some of the sensory organs of the lateral line were modified to function as the electroreceptors called ampullae of Lorenzini. The lateral line system is ancient and basal to the vertebrate clade, as it is found in fishes that diverged over 400 million years ago.

↑ Return to Menu